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Vector Basis Function Solution of Maxwell’s
Equations

Dipankar Sarkar

Abstract

A general technique for solving Maxwell’s equations exactly. based on expansion
of the solution in a complete set of vector basis functions has been developed. These
vector eigenfunctions are derived from the complete set of separable solutions to the
scalar Helmholtz equation in a particular coordinate system and are shown to form a
complete set. The method is applicable to a variety of problems including the study
of near and far field electromagnetic scattering from particles with arbitrary shapes.
plasmon resonances in spherical nanoparticles with spherically concentric "shells” and
the calculation of plasmon resonances in the sphere-plane geometry. An exact method
for solving the inhomogenous Maxwell’s equations (i.e.. in the presense of charges and

currents) is also outlined.
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Illustrations

Pillbox at an inteface between two media. éz; and 6z, are made to
approach zero so that the only contribution to the suface integral
occurs from the area ASonly. . ... .. ... ... .. ... ...
When the rectangular loop in made to shrink in height. the
contribution to the line-integral will be dominated by only the

lengths parallel to the interface. . . ... ... ... ... .. ... ..

Demonstrating completeness of basis function expansion. The
expansion of an arbitrarily chosen wave in the L. M and N functions.
The solid lines show exact values. The broken lines are computed
from a truncated series in the basis functions. The above calculations
are done with 15 terms (n = 15) for kr € [0.12]. § = 37 degrees.

o = 39 degrees. a = 123 degrees. 3 = 83 degrees. §. = 49 degrees and
0. = 21 degrees. Convergence is very good for |kr| < 0.75n. The
horizontal axes are in unitsof Jkr|. . . . . ... ... oL
Demonstrating completeness of basis function expansion when the
specified wave vector is complex. The solid lines show exact values.
The broken lines are computed from a truncated series in the basis
functions. The above calculations are done with 15 terms (n = 13)
for krmaer = 10 + 8i. 8 = 35 degrees. 0 = 42 degrees. a = 97 degrees.
3 = 82 degrees. 0, = 21 degrees and o, = 79 degrees. Convergence is

very good for |kr| < 0.75n. The horizontal axes are in units of |&r]|.

Shell-geometry with single shell. There are three spherically
concentric regions indicated. The core has dielectric constant ;. the
shell has dielectric constant €, and the exterior has dielectric constant
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4.11 Calculated Plasmon Resonance in core-shell model. The shell is of

(1]
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gold. The core is a dielectric with ¢ = 5. The diameter of the core is
held constant at 10nm, but the shell increases in thickness from

1.5nm to 6nm. The peak shifts towards the blue. . . . . . . ... ..

(a) Geometry of ‘capsule’ shaped scattering object. Two hemispheres
of radius R are attached to the end of a cylinder of length L. Letting
L— 0. the capsule degenerates to a sphere. (b) Approximating the
azimuthally symmetrical surface by means of the discrete set of
angles §;. r as a function of § is specified by a piece-wise continuous
function. n indicates the normal and t the tangent orthogonal to e,.
Defining the relative orientation of E and k for s and p polarization
geometries. The definition assumes the presence of an interface at the
xv-plane. . . ... .o
Structure of the matrix derived from the boundary condition
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an overall rotation by 45 degrees. The differences are due to round-off
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Field calculations by including higher orders of m. from m =0 up to
m = 5. Glass sphere (e = 2.5) of radius R = L\ and §; = 15°.
Although m =1 appears to be the ‘dominant’ term in this sequence.
serving to establish the overall field distribution, the higher orders are
necessary to obtain more accurate calculation of the field intensities.
Field calculations for different orders of m. from m =0 up to m = 3.
Glass sphere (€ = 2.5) of radius R = 1A and 6; = 45°. The m =1

contribution appears to be the most ‘dominant” term in this sequence.

The contributions from m = 4 and m = 5 terms are going to be small.

Electromagnetic scattering from a ‘capsule’ scatterer. R = 0.5\ and
L is increased from zero (sphere) to 0.3A. The dielectric constant of
the scatterer is taken as 2.5 in these calculations. Light is incident
from the bottom of the figure with the polarization directed out of
the paper. . . . . ...
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light approaches from different directions. From top-left to
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Structure of the matrix derived for the sphere-plane model from the
boundary condition equations for a specified m. We obtain 6N
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are exact. The matrix above is shown for n = 6 and so the number of
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5.12 Plasmon resonance in sphere-plane model. A Gold sphere of radius

30nm located 5nm from a gold substrate. the sphere are gold. (a)
Theoretical calculation of plasmon resonance based on experimentally
obtained bulk dielectric function for gold: the broken line shows the
assumed detector response in the photoemission experiment in (c).
(b) Multiplying the calculated spectrum in (a) by the detector
response. (c) Experimentally obtained spectrum of photon emission
from a tip-substrate geometry in the ‘field-emission’ regime. . . . . .
Plasmon resonance in sphere-plane model. A Copper sphere of radius
30nm located 5nm from a copper substrate. the sphere are copper.
(a) Theoretical calculation of plasmon resonance based on
experimentally obtained bulk dielectric function for copper: the
broken line shows the assumed detector response in the
photoemission experiment in (c). (b) Multiplying the calculated
spectrum in (a) by the detector response. (c) Experimentally
obtained spectrum of photon emission from a tip-substrate geometry
in the “field-emission” regime. . . . . ... ... ..o
Plasmon resonance in sphere-plane model. A silver sphere of radius
30nm located 3nm from a silver substrate. The sphere is silver. (a)
Theoretical calculation of plasmon resonance based on experimentally
obtained bulk dielectric function for silver: the broken line shows the
assumed detector response in the photoemission experiment in (c).
(b) Multiplying the calculated spectrum in (a) by the detector
response. (c¢) Experimentally obtained spectrum of photon emission
from a tip-substrate geometry in the ‘field-emission’ regime. Notice
the field enhancement at resonance (by a factor of ~ 10). . ... ..
Comparison of field enhancements with a silver sphere on a copper
substrate and a copper sphere on a silver substrate. In this case. it is
clear that the enhancements are contributed more by the nature of

the sphere as compared to the substrate. . . . . ... ... ... ..

xi

93

94



Preface

There are many classic problems that attract scientific interest for long periods of
time. Over time. different researchers put in their fresh inputs and the subject con-
tinues to evolve. It is almost a team effort. except that it is distributed in time.
Certain problems are sufficiently difficult in that it requires a few generations of sci-
entists to finally solve them. The problem of solving Maxwell's equations is once such
classic problem. The collective knowledge of many scientists and researchers of the
past have contributed in significant ways to allow us to put together this work ~Vector
Basis Function Solution of Maxwell's Equations™. This is certainly not the last word
in such solution methods. just another important contributory step towards our goal
of understanding nature. In other words. it is part of one of the greatest adventures
known to humanity: the scientific endeavour.

With this in mind. we must continue to march towards progress. Specifically.
the knowledge contained here or any of its derivatives may be emploved for peaceful
purposes only. This knowledge is strictly forbidden for use by any military
organization.

Dipankar Sarkar

Rice University
Department of Physics
Houston. Texas

Sept 10, 1996
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Chapter 1

Introduction

The subject of obtaining the solution of Maxwell’s equations in a boundary value
problem has kept scientists occupied for more than one hundred vears [23]. [t is one
of the few “classic’ problems that continue to attract the attention of researchers.
Many contemporary problems of interest involve our knowledge of the exact solution
to these equations. However. the complexity of these equations has defied analytic
solutions for all but the simplest cases.

To state the problem more correctly. one needs to understand the length-scales
involved. In a scattering problem for example there are two lengths involved: d. the
physical size of the scattering object and A. the wavelength of electromagnetic waves
in question. When d > A, the problem is readily solved. The method of solution.
called geometrical optics. has been known for at least a few hundred years. I[n fact
we do not even need to invoke Maxwell’s equations directly. The other limiting case
is when d <« A. This regime is called the quasistatic limit or nano-optics. Although
mathematically involved. the solution in the quasistatic limit is obtained by solving
Laplace’s equation. The problem is far more complicated when d ~ A. It is in this
regime that one is required to solve Maxwell's equations exactly.

The problem involves the solution of a set of partial differential equations (The
Maxwell Equations) for the coupled vector fields for the electric field E and the mag-
netic field H. Although the general theoretical aspects of these equations are fairly
well understood at the moment [25] [30], there are still some formidable mathemat-
ical or computational problems to overcome in the area of solving the time-varying
boundary value problem. Whereas the problem of acoustic (scalar fields) diffraction
has been solved in a number of cases such as the strip. elliptic cylinder. hyperbolic
cylinder. wedge. prolate and oblate spheroids. etc. [13]. the corresponding solution
for the vector fields are still by and large unconquered. Often the solution is worked
out only in the quasistatic approximation by solving Laplace’s equation (homogenous
case) [4] [3].



(3]

1.1 Historical Development

[n the absence of sources, these coupled partial differential equations have been solved
exactly. analytically, only for a few isolated cases. The method of solution involved
in these cases requires the knowledge of certain ingeneous transformations. suitable
only for the problem in question. Usually these are dictated by the simple geometric
shapes of the boundaries in question. Often these boundaries have to correspond to
the coordinate surfaces in order for the boundary conditions to be separable. The
simplest canonical case of scattering of plane waves reflecting/refracting at a planar
interface [22] is commonly known by the name of Fresnel's Equations. The most
celebrated analytic solution to the scattering problem is that of Mie scattering. the
scattering of electromagnetic waves from a dielectric sphere [12]. originally due to G.
Mie (1908).

Immediately after Mie obtained the general solution to the sphere problem. Debye
was able to formulate the same problem in terms of a pair of coupled scalar func-
tions [27]. in which the electric and magnetic fields were expressed. The method
was again suitable for boundary value problems with spherical boundaries only.
Hanzen [19] [20] [L8] developed a technique for addressing the problem of radiation
from antennas using a special type of transformation. The subject was developed fur-
ther by Stratton [38] who solved the problem of Mie scattering using a set of vector
functions derived from the solutions of the scalar Helmholtz equation. Subsequently.
Aden and Kerker [1] used the formalism to solve the problem of electromagnetic scat-
tering from two concentric spheres. Although Stratton [38] had made considerable
contributions to this area of basis function expansion. the method of solution was still
considered as just another ‘more elegant” way to solve the Mie problem. analogous
to the approach of Debye. The crucial idea that was missing at this stage was the
notion of mathematical completeness of basis function expansions. Furthermore. the
algebraic difficulties one had to overcome restricted the Stratton approach to solv-
ing the spherical scatterer problem with incident light approaching along the z-axis
only. Progress in this subject was negligible beyond this stage and the problem is
reproduced in its original form even in contemporary text-books [0] [L1].

The problem of diffraction of a plane wave at normal incidence on a circular cvlin-
der was originally solved by Rayleigh and since then his solution has been generalized
and extended to plane waves at oblique incidence [41]. The method of basis function

expansion was again used in this problem. Similarly. the problems of electromagnetic



and acoustic scattering from a semi-infinite cone [36] and a semi-infinite body of rev-
olution [35] were obtained by the method of basis function expansion. For the special
case of the paraboloid, the solutions were ‘exact’. The generality of these approaches
were not apparently proved (or even appreciated) bevond the specific geometries these
earlier researchers were interested in. .

In the mid 1960’s there began a growing interest in the study of Maxwell's equa-
tions as a purely mathematical problem [25] [30]. Perhaps the growing use of so-
phisticated electromagnetic devices testified beyond doubt the correctness of these
equations for macroscopic electromagnetic phenomena. The theory of Maxwell's
equations was now to go through the rigors of verifying its mathematical founda-
tions. The mathematical apparatus of topology and modern analysis was available
to study the mathematically interesting properties of these equations. For example.
it was found that any electromagnetic response within a perfectly conducting cavity
(resonator) could be expressed in a complete set of functions (that is. the existence
of such functions was proved) [25] [30].

The Sphere-Plane model consisting of a dielectric sphere close to a semi-infinite
half-space substrate has been used to model the effect of irregularities in a surface
that can lead to high local field enhancements [3] [4] [33] [34] [39]. The problem has
been solved in the quasistatic approximation except in the work of Takemori [39] who
obtained the exact solution using a Greens function approach with higher orders of
scattering from the sphere and the plane.

More recently. primarily due to the availability of increasingly powerful comput-
ers. our approach for solving the Maxwell equations have taken a rapid ‘numerical’
path. It is all too common to try to solve a boundary value problem entirely numeri-
cally. One uses finite difference equation approximations of the Maxwell equations on
a (often non-linear) grid within a defined region of interest. Although such techniques
are extremely powerful for solving problems with absolutely no symmetry. they are
often very resource hungry in terms of memory(core) and computation time. Often
researchers have to resort to solving the two-dimensional analogs (or some approxi-
mation of it) to try to understand the physics in a specific situation.

In the last decade there has been a rapid development in the area of scanning probe
microscopies. As experiments have become more sophisticated. including the coupling
of light at the active junction in a scanning probe microscope. considerable efforts
have been directed towards modelling an illuminated tip-substrate geometry [14] [28]
[10] [9] [8] [23]. Whereas the solution in the quasistatic limit is easy to solve [14].



it is difficult to justify. The use of complex dielectric functions and the fact that
the tip and substrate boundaries (the scattering objects in this problem) extend to
infinity (so the condition that the dimensions are much smaller than the wavelength
of the optical field in question does not hold true) are not totally justified. Attempts
are currently underway to obtain ‘exact’ solutions to these problems. At the present
moment. the available techniques to solve this problem too have remained by and
large unsatisfactory.

Some other notable geometries for which the exact solution of electromagnetic
scattering have been obtained in three dimensions include the prolate and oblate el-
lipsoids. Certain two dimensional cases. such as the circular. parabolic and elliptic
cylinders. are also amenable for exact solutions [13]. However. for arbitrary geomet-
rical shapes one has to resort to solving the Maxwell equations by finite element
numerical techniques.

Finally. the problem of solving the inhomogenous Maxwell equations in general
have seen very little progress. The usual approach has been to reformulate the prob-
lem in terms of the scalar and the vector potentials in a given gauge. One uses Greens
function techniques to solve for the vector potential. given the current densities. The
scalar potential is similarly solved from the knowledge of the charge densities. The
mathematical apparatus is not sufficiently developed in this area and the problem is

by and large unsolved. exactly.

1.2 Outline of The Thesis

In Chapter 2 we introduce the notion of the vector basis functions and prove that
they form a complete set in a given coordinate system. The proof on completeness is
followed by a discussion on the relevant boundary conditions in a scattering problem.
In Chapter 3 we go into the detailed algebra of trying to expand an arbitrary plane
wave in the basis set. Only the key results are highlighted and the bulk of the
algebra is carried out in the appendices. The chapter on the Shell-Problem is the first
application we consider in which the basis functions are used to obtain the solution.
Comparison of the calculations are made with several experiments that are published
in the literature. The next chapter on ‘Scattering from non-spherical objects” uses the
same basis function technique to solve the problem of scattering from an elongated
object whose boundaries do not conform to the coordinate surfaces. Previously. this

kind of calculation could be done by using completely numerical techniques only. We



also look into the solution of the sphere-plane model and compare our calculations
with experiments reported in the literature. Finally we conclude by highlighting the
future directions in which this research could continue to establish itself as a powerful

general technique for solving Maxwell’s equations.



Chapter 2

General Solution of Maxwell’s Equations

2.1 Introduction

Many macroscopic electromagnetic phenomena have been successfully described by
Maxwell’s Equations. Over the past one hundred years. it has been put to test
through the rigors of scientific scrutiny. Strictly speaking. the theory is applicable in
a macroscopic sense. where one can assume the knowledge of "bulk’ electromagnetic
properties of materials such as the dielectric function. However. the theory has been
so successful that scientist have often taken the liberty of extrapolating the region of
applicability to the nanometer and sub-nanometer scales.

The electromagnetic field at a time t. and at any point r in a medium character-
ized by a dielectric function ¢(r.¢) and magnetic permeability p(r.t) is described by
Maxwell’s Equations. The differential form of the equations in terms of the electric
field E. the magnetic field H, the electric displacement D. the magnetic induction B.
and the sources: J. the current density and p. the charge density. are defined below.

for notational consistency within this thesis:

V-D(r,t) = p(r,t) (Gauss's Law) (2.1)

V x E(r.t) = ——a# (Faraday's Law) (2.2)

V-B(r.t)=0 (No Magnetic Monopoles) (2.3)
oD(r.t)

V x H(r.t) = J(r.t) + (Ampere’s Law) (2.4)

ot

These four equations. along with the constitutive relations: B = yH and D = ¢E
are in principle capable of describing all macroscopic electromagnetic phenomena.
In practice. given an electromagnetic phenomenon describable as a boundary value

problem. it is a formidable task to solve these equations exactly. At present. only



finite element numerical techniques are available to solve a general problem. These
numerical calculations are sufficiently resource-hungry in terms of memory and total
computation time that in most cases only the simplest geometries and often only the

two-dimensional analogs are attempted for a solution.

2.2 Linear Homogenous Isotropic Medium

For the interesting subclass of problems that are related to the scattering of electro-
magnetic radiation by dielectric and/or magnetic boundaries. the general equations
assume a much more symmetrical form. Within this approximation of a linear. time-
invariant. homogenous and isotropic medium without any external sources. Maxwell's

equations assume the form:

V-.E(r,t)=0 (2.3)

VxE(r.t)z—ya—H—é?—'Q (2.6)

V-B(r.t)=0 (2.7)
OE(r. t)

VxH(r.t):aE(r.t)—{-eT— (2.8)
Where we have assumed the possibility of an induced current density in the medium
equal to oE. where o is the conductivity of the medium under consideration. Also.
for harmonic time-dependence of the external fields. e ~*. where « is the angular
frequency. the time derivatives could be factored out. and we obtain the set of cou-
pled partial differential equations in the spatial coordinates alone. with the angular

frequency of the excitation as a parameter :

V. E(r.«)=0 (2.9)
V x E(r.w) = iwpH(r.w) (2.10)
V-.B(r.w)=0 (2.11)

V x H(r.w) = cE(r.«) — tweBE(r.») (2.12)
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From now on., we shall use a simplified notation by suppressing the argument list

(r.w). Thus Equation 2.12 becomes:

o

VxH+iw(e+ —)E=0 (2.13)
w
And from Equation 2.10 we obtain:
1
H= —V xE (2.14)
Wy

Substituting the expression for H from Equation 2.14 into Equation 2.13. and in-
troducing the complex dielectric function é = ¢ + 2. we obtain the Vector
Helmholtz Equation for the electric field vector:

VxVXxE-WwuéE =0 (2.15)

Similarly. taking the curl of both sides of Equation 2.13 and substituting for V' x E
from Equation 2.14. we obtain the corresponding Vector Helmholtz Equation for the

magnetic field intensity vector:
VxVxH-e2uéH=0 (2.16)

These equations are totally symmetrical in the field variables and they also decouple
the electric and magnetic fields. It is the solution to the Vector Helmholtz Equations
for specified boundary and radiation conditions that describes the scattering of elec-
tromagnetic waves. However. these equations are vector partial differential equations
which are sufficiently difficult to solve in general. The most well known non-trivial
problem that has been solved exactly. analytically. is that of scattering from a sphere
(Mie Scattering, 1908). It is the purpose of this thesis to develop the general tech-
nique of vector basis function expansion. for the solution of both the near and far

fields in electromagnetic scattering from finite sized objects.

2.3 Solution Space of Vector Helmholtz Equation

The theory of solving the Scalar Helmholtz Equation. also known as the Wave
Equation. is a very well developed subject [29] [53] [43] . This equation describes the

propagation of scalar waves. such as acoustic waves. in a medium.

Viu(r.t) + k%w(r.t) =0 (2.17)



When expressed in certain orthogonal curvilinear coordinate systems. such as the
cartesian coordinate system or the spherical polar coordinate system. under assump-
tion of sinusoidal time-dependence. the solution ¥'(r.¢) can be obtained by the tech-
nique of separation of variables. The separation procedure reduces the partial dif-
ferential equation to several ordinary differential equations. The separated equations
can often be cast in the form of the well known Sturm-Liouville eigenvalue problem for
second order ordinary differential equations. so that the solution space is guaranteed
to be complete for the scalar Helmholtz equation.

For the moment let us assume that we have obtained a complete set of scalar
functions {«'} that are solutions to the scalar wave equation (Eqn 2.17). Let us

introduce the diffraction equation :
VI(V-G) =V xVxG+kiG=0 (2.18)

where k2 = w?ué. The diffraction equation is satisfied by the electric field E and the
magnetic field H that satisfies the Vector Helmholtz equations since the “extra’ term
V - G will be zero for fields that have zero divergence. So. Equation 2.18 is consistent
with Maxwell’s equations for electromagnetic waves. Let us define a vector function

that is obtained by taking the gradient of the scalar function v
L=V¢ (2.19)
L satisfies the diffraction equation if ¢ is a solution to Equation 2.17:

V(V-L)-VxV xL+kL
= V(Y- Te) =V x ¥ x Vo 4 K3V
= V(Vi +k*) (Since V x Vi =0)
= 0 ( Since VZ¢ + k%v = 0) (2.20)

Now let us assume that there exists a vector function M. with zero divergence.
V -M = 0. that is a solution to the diffraction equation(Eqn 2.18). Let us con-
sider the vector N = £tV x M. Assuming k is a constant(homogenous medium). we

obtain:

V(V-N)=V xV x N+ k2N

= %(V(V-VxM)—VxVxVxM+k2VxM)
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= V x(=V x(V x M)+ k*M) (Since V- (V x M) = 0)
= Vx(V(V-M)—-V x(VxM)+ k*M) (Since V-M = 0)
=0 (Since M satisfies Eqn 2.18) (2.22)

Thus we show that N, as defined above, also satisfies the diffraction equation. Also
V - N = 0. since divergence of curl is zero. So. if we had started with postulating
the existence of a vector function N with zero divergence. we could show that there
exists M with zero divergence. Thus from symmetry arguments alone. we could write
M = 1V x N. Specifically. since N = ¥V x M. since k is a constant (by assumption

of homogeneity of the medium).

VxN = %VXVXM (2.23)
VxN = %ILJM (Follows from Eqn 2.18) (2.24)

Thus M = +V x N. Clearly. M and N are distinct from L. since the latter has non-
zero divergence in general. So L must be linearly independent of {M.IN}. It is up to
us to create a vector function M(or equivalently N) from the given scalar function ¢
such that it will have zero divergence and will satisfy the diffraction equation. The
point to note is that we could arrive at more than one set of functions {M.N}. and
it is the relative algebraic convenience that will dictate the choice of a particular set.

As a concrete example. let us consider M = V x av'. where v is the given scalar
solution and a is an arbitrary constant vector. The divergence condition is satisfied.
since divergence of curl is identically zero: V-M = V .(V x ar) = 0. Using
the operator identity (the author has verified this ‘identity” for the spherical polar
coordinate sytem and the cylindrical coordinate system in addition to the rectangular
coordinate system), V(V-M) — V x V x M = V2M. we can write:

V(V-M)=V xVxM+k*M
= VM + i*M
= VV x av) + k*(V x aw)
= V3(Ve xa+u(Vxa))+ki(Ve xa+ (¥ xa))
= VVe xa)+k*(Ve xa) (Since V x a =0)
= (V3(Ve)+ k*Ve) xa (Since V2 does not act on a)
= (V(VZ 4+ k%)) x a
=0 (Since ¢ satisfies Eqn 2.17) (2.2

[EV]
(8%
ot
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Also M=V xay=V¢ xa=Lxa. So, M-L=0.ie. L and M are orthogonal.
Thus. given a countably infinite set of particular solutions to Eqn 2.17. {e,}. that
are finite, continuous, single-valued and with continuous partial derivatives: associ-
ated with each y', one can obtain a triplet of mutually non-coplanar vector solutions
{L.,M,.N,}, satisfying Eqn 2.18. Presumably. any arbitrary solution of the diffrac-
tion equation can be expressed as a linear combination of these vector functions.
However. the existence of a generalized Fourier series expansion supposes that the set
{L,.M,.N,} forms a complete set.

Proving the completeness of the set {L,.M,.N,} is a two step process. First.
one has to prove the existence of a complete set of functions for the diffraction equa-
tion. Next. one has to show that the {L,,M,,N,} set can indeed span the solution
space of the diffraction equation. or equivalently. the vector Helmholtz equations. If
the labeling index n is not countable. then an arbitrary solution could be expressed
as a generalized Fourier Integral of the basis functions with respect to the labeling

parameter.

2.4 Completeness of Vector Eigenfunctions

Our goal is to be able to represent the solution of electromagnetic scattering in a
series of vector eigenfunctions of the diffraction operator. The fundamental question
we have to address is whether or not such a set is complete (in a strictly mathematical
sense). In other words. whether the set of functions under consideration forms a basis.
It can be shown that the solution space of the diffraction operator cannot be spanned
by any finite set of functions. Assume momentarily that we have obtained only the
L, functions from the scalar solution, and that we have no knowledge about the
existence of the M, or N,, functions. So we have a countably infinite set of functions
that satisfy the diffraction operator. But it is easy to prove that such a set does
not form a basis. In other words. there are elements in the solution space that are
independent of the L, functions. For example. the M, functions defined as L, x a are
clearly orthogonal to the L, functions. Naturally. the same concerns are valid even
with the knowledge of the larger set containing all the three types of functions. e
do need to address the question of whether or not the set {L,.M,.N,} is a complete
set.

[t is a well established fact that the set of all plane wave solutions form a com-

plete set in the solution space of the vector Helmholtz operator. Physically this
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implies that any scattered wave can be constructed by linear addition/superposition
of plane waves. The diffraction operator is somewhat more general than the vector
Helmholtz operator in the sense that it is satisfied by ‘generalized plane waves™ which
have non-zero divergence. The vector Helmholtz equation. which follows directly
from Maxwell's Equations in a homogenous and isotropic medium is satisfied only by
the zero-divergence solutions. Within a non-isotropic medium in which momentum
transfer can occur, such as in a crystal, the E need not be perpendicular to k. and
the zero-divergence solutions cannot describe such a wave. Although we are not di-
rectly concerned with non-isotropic media, for the sake of arguments of mathematical
completeness. we shall work with the solution space of the more general diffraction
equation.

Although the set of all generalized plane waves span the solution space. there is
a fundamental difficulty with such a set. It arises from the fact that such a set is
uncountable. In other words. the label(s) to identify the individual elements of the
set are in this case. continuous variables (being the value of the propagation vector.
and its direction cosines. and the direction cosines of the electric field). Such sets are
not easily amenable for construction of general scattered wave solutions. [t is here
that a countable basis comes to our rescue.

To begin. let us identify a few properties of the diffraction operator and its corre-

sponding solution space.

1. The space is linear. That is addition of two solutions and multiplication of a
given solution by an arbitrary complex number is also a solution. This follows
directly from the linearity of the diffraction operator. In particular. 0.f = 0 for

all f belonging to this space.

[SV]

The space has an inner product and a metric. Mathematically this implies that
with any pair of elements a and b. we can associate a complex number called

the inner product (a|b) satisfying the following rules:

e (calb) = c(a|b) where c is an arbitrary complex number.

d + a|b) = (d|b) + (a]b) for any d belonging to the set.

(
(
(a]b) = (bla)* where = represents the complex conjugate.
(

e (aja) > 0 for a # 0 and (a|a) =0 only for a = 0.
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3. The space is complete since there exists the plane wave set which we know
is a complete set. Mathematically it means that every Cauchy sequence is

convergent.

With these properties satisfied, the set of all solutions of the diffraction operator form
a Hilbert Space. The inner product can be defined as will be seen when considering
the solutions in a particular coordinate system. such as the spherical polar coordinate
system (Chap 3).

It can be shown that if {e;} is an orthonormal set in a Hilbert Space H. and if x is
any vector in H. then the set S = {e; : (x|e;) # 0} is either empty or countable [37].
The importance of this theorem is that this guarantees countability of the basis if it
exists. It can also be shown that every non-zero Hilbert space contains a complete
orthonormal set. This follows from fundamental axioms of set theory embodied in
Zorn's Lemma [17]. The important fact to consider at this stage is that the two
statements mentioned above concerning Hilbert spaces tell us immediately that there

exists a countable basis.

2.4.1 Completeness of the L, M, N set

We have already seen that we can arrive at a set {L,.M,.N,}. of vector eigenfunc-
tions that are mutually non-coplanar. It is clear that Vv, and Vi, are different
functions in general. Similarly, it can be argued that the set of functions is such
that at any given point in space. they are not all pointing in the same direction. In
mathematical language. the set is linearly independent. The set also has a countable
infinite number of elements in it. The scalar functions {v',} are continuous with at
least continuous partial derivatives up to second order. This implies that the derived
vector functions are continous as well.

Assume that we are given an arbitrary solution to the diffraction equation. x. By
saying that we are given the solution, we mean that its value has been specified at a
given set of points. § = {x1,X2,...}. For the moment let us assume that this set S
is a countable set. as we have indicated by subscripting with natural numbers. For
example. if the value has been specified at all coordinates (r.y.z) where r.y.z €
{p/q: p.q € I}. then the set can be shown to be countable. Thus the specified set of
points can be put in one-to-one correspondence with an index set. such as the natural

numbers.
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Now if we pick the first specified point where the function is defined. we obtain
a vector of a certain magnitude which points along some specified direction. We can
immediately pick the triplet of solutions {L;.M;,N;}. and by virtue of their linear
independence. we can choose suitable coefficients so that the sum a,L; + 6M; +
ciN1 = x;. where the coefficients a;.b;.c; are complex numbers. Since the left-
hand-side is a linear combination of solutions to the diffraction equation. so we have
a valid solution that is equal to the specified solution x at one point. In general
the diffraction operator will propagate the linear combination a;L, + 6:M; + ¢, N,
so that it will be different from the specified solution at other points (if it does
not, then of course we have obtained the desired expansion. and we can stop the
process here). So assume that the linear combination just obtained deviates from the
solution at point 2, x,. Now we can pick our second triplet {L,.M2.IN,}. and obtain a
‘correction’ to the original solution so that it matches at both the points. Essentially.
we are solving a system of six equations in six unknowns to satisfy the match at
the two specified points. Now it is easy to see that we can continue this process to
‘match’ the specified function in an infinite series of the set of vector eigenfunctions
to any arbitrary precision. By virtue of continuity of these functions. their linear
combinations are also continuous for any finite number of terms. The difference
between the arbitrary solution and the series just obtained can in principle be made
as small as we wish. In other words the sequence of approximations will eventually
converge to the desired solution (it forms a Cauchy sequence). As a corollary. we
immediately note that the set of expansion coefficients so obtained need not be unique.
It does depend upon the order in which we picked them to satisfy the conditions for
a match.

The validity of the statement of convergence of arbitrary Cauchy sequences follow
from general considerations of a more restricted space of square-integrable functions.
L[?. with a semimetric. We know that the scattered solutions have to satisfy the
radiation conditions. In other words, they have to vanish at infinity in a square-
integrable sense. This follows from the finite energy content in any scattered wave
from finite objects. The L. M and N functions satisfy such conditions. It can be
shown (The Reisz-Fischer Theorem) that every Cauchy sequence in the semimetric
space L? converges to a function in L2. or that it is complete [2].

To conclude this section. we note that the existence theorem concerned itself with
an orthonormal set. The set of functions {L,.M,.N,} are not entirely orthogonal.

However. they are a linearly independent set. This allows us to invoke the process
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known as the Gram-Schmidt Orthonormalization procedure to obtain a complete or-
thonormal set from the given set of linearly independent vectors [37]. In practice. as
we shall see later. it is not always required to carry out the process of orthonormal-

ization to begin with.

2.4.2 Zero Divergence Solutions

Consider a solution F whose divergence is zero. Let us find an expansion of F in
terms of the basis {L,.M,.N,}. so that

F=> {aM,+b:N,+ciLn}. (2.26)

Taking the divergence of both sides of the above equation. we find

V-F = ) {a.V-M,+6,V-Np+¢,V-L,}

n

or. 0 = > {eV-Ly}. (2.

[N
(8%}
-1
—

Since this has to hold true at all points, we conclude that all the ¢, must be zero. In
other words. a zero-divergence solution can be expressed only in terms of the M and

N functions.

2.5 Boundary Conditions for Time-Varying Fields

Consider an interface between two media 1 and 2, with surface charge density o(r.¢)
and a current densities J;(r.t) in medium 1 and Jo(r.t) in medium 2. To avoid
confusion with notation. conductance will be represented by g(r). since o(r) has been
used to represent the surface charge density. Assume the volume charge densities
to be pi(r.t) and po(r.t) in the respective media separated by the surface. Let us
consider a pillbox as indicated in the Figure 2.1. [t has cross-sectional area AS and
extends 6z, and 6z, respectively into medium 1 and 2. The unit normal directed into

medium | is denoted by n. From the continuity equation for charge:

dp(r.t)
ot

Integrating both sides of Equation 2.28 over the volume of the pillbox. we obtain:

/V-J(r,t)d3r=——— Up (.t (P] = 0'\‘0(’( ) (2.29)

V. J(rt)=— (2.28)
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p2 'J2
Figure 2.1: Pillbox at an inteface between two media. 6z, and éz, are

made to approach zero so that the only contribution to the suface integral
occurs from the area AS only.

where \g(t) is the total charge within the elemental pillbox and is given by :
Aq(t) = p1(r. £)AS bz + pa(r.t)AS 6z + o(r. t)AS. (2.30)

If we let the pillbox thickness shrink. so that éz; and é6z; go to zero in Equation 2.30.

and also employ the divergence theorem. we obtain :

d -
. _ — ' DN
?{J dS at/o(r.t)(lb (2.31)
or .
/umwyﬁ—hujyﬁMS=—i/}u¢m5 (2.32)
’ ' ot
which. in the limit of dS approaching zero. leads to
o (r. t
(Jl(r-,t)—Jz(I‘-f))'fl=—aagr A (2.33)
ot
By similar reasoning, since
V- -D(r.t) = p(r.t) (2.34)

we can write the difference in the normal component of D at an interface

(Di(r.t) — Dy(r.t)) - & = o(r. t). (2.35)
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For sinusoidal time dependence of the excitation field. the surface charge density
a(r.t) = oo(r)e . Also. J(r.t) = g(r,w)E(r)e~**. So from Equation 2.33 we can

write
gi(r,e)E (r.t) - i — ga(r.w)Ey(r.t) - i = wwo(r.t). (2.36)

Using Equation 2.35 this becomes
gi(r.w)E((r.t) -0 — ga(r.w)Es(r.t) - n = w (Dy(r.t) - 0 — Dy(r.t) - n) (2.37)
Using the constitutive relation D = eE we obtain
(e +%) Ei-h= (ez+ﬁ2—) E; i (2.35)

So. finally we obtain the time-varying boundary condition. the normal component of

(complex) D is continuous

élEl(P.t)‘ﬁL'égEg(l‘.t)'fl . (23())

Here ¢ is the complex dielectric function of the corresponding medium. Thus we find
that Equation 2.39 assumes the same form as the equivalent static case by using the
complex dielectric functions. It is the complex dielectric function that incorpo-
rates the losses and phase delays associated with time-varying fields in a medium.
Consider a closed loop across an interface, as indicated in the Figure 2.2. By

integrating both sides of the equation

VxE(r.t):-aBg't) (2.40)
over the surface enclosed by the loop. we obtain
[(¥ xEir.t)-ds = /aB r-1) (2.41)
. _— —_—— . ) A4
FE(r.t)- dl 5 /B dS (2.42)
?{E(r.t)-dl =0 (2.13)

since the surface integral will vanish in the limit of shrinking the height of the loop.
From this it immediately follows that the tangential component of the Electric field
(even in the time varying case) must be continuous across an interface between two

media. Thus

E(r.t)-t = Ey(r.t) -t} (2.44)




Figure 2.2: When the rectangular loop in made to shrink in height, the
contribution to the line-integral will be dominated by only the lengths
parallel to the interface.

If we exclude ferromagnetic materials. as well as materials with magnetic hystere-
sis. then since we do not have magnetic monopoles or the equivalent of an electric
current for magnetic fields. the boundary conditions for the magnetic fields will have
the same form as the corresponding static boundary conditions. Specifically. the tan-
gential component of H. the magnetic field, and the normal component of B. the

magnetic induction must be continuous across a magnetic interface:

H(r.t) -t = Hy(r.f)- t (2.15)

and

i Hy(r.t) - n = poHa(r.t)-n (2.46)

where y; and p, are the permeabilities of the respective media.

Since there are two independent tangential directions and one normal direction
for each point on a surface. these boundary conditions provide us with a total of six
equations for each interface between two media. However. these equations may not
be all independent of each other. It can be shown [22] that for a plane interface
and an arbitrarily polarized plane wave. the equations on continuity of the tangential
components of the E and H fields are the only independent equations. For non-
planar surfaces. that are sufficiently smooth. the same arguments should hold locally

at any point on the surface where the curvature can be considered negligible and the
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arguments for a plane should hold good. Since this holds true for an arbitrary plane
wave, it should hold true for any electromagnetic wave such as non-planar or even
non-periodic waves. Non-smooth structures such as an edge can be be approximated
by a surface with finite curvature.

In general. obtaining the solution of vector fields imply that we obtain the solution
of three mutually non-coplanar fields. On the boundary surfaces. we can construct
three functions from the solution: Two of them representing the tangential compo-
nents of the fields on the boundary and one representing the normal component on
the boundary. The continuity of the three components across the boundary leads
to unique determination of a vector field (with three components). For the electro-
magnetic field. the E and H are coupled. So. although we can determine each field
independently with three independent equations each on the boundary surfaces. the
coupling of the fields tell us at once that not all of them are going to be indepen-
dent. In summary. one can obtain four independent equations from the boundary
conditions for each interface between two media for special geometries. For arbitrar-
ily shaped boundary surfaces we need to consider all the six equations and solve an
over-determined system of equations.

Finally. one has to satisfy the radiation conditions which requires the scattered
solution to decay inversely as the distance in the far field. and to assume the form of

a spherical wave.



Chapter 3

Plane Wave Expansion in Basis Functions

3.1 Introduction

The success of the method of (vector) basis function expansion relies on our abil-
ity to express. conveniently. the incident radiation in terms of these basis functions.
Although the completeness of this basis set guarantees the existence of unique coef-
ficients for the expansion of an incident plane wave. in practice this involves some
non-trivial algebra. It is our goal in this chapter to obtain explicit expansion coeffi-
cients for a general plane wave in these basis eigenfunctions. Linearity of Maxwell's
equations imply that any excitation. non-planar or even non-periodic. could be solved
in principle. from the known solution to plane wave excitations by use of Fourier space
analysis. In principle. the set of basis functions obtained in any general orthogonal
coordinate system could be considered a valid set of eigenfunctions in which the so-
lution could be expressed. However. strictly algebriac and numerical considerations
are in favor of the use of the functions pertaining to the spherical-polar coordinate
system. for systems with azimuthal symmetry. The extensive analytical foundation
readily available for the spherical Bessel/Hankel functions as well as that for the
Associated Legendre functions allow us to obtain the expansion coefficients in closed

form expressions.

3.2 The L,M,N basis

The solutions to the scalar Helmholtz equation in spherical polar coordinates are

functions of the form (Appendix A):
Ymn(r.0.8) ~ (k1) P™(cos §)e™ (3.1)

where z,(kr) represents either the spherical Bessel functions j,(kr) or the spherical
Hankel functions of the first kind h{})(kr). The spherical Bessel functions are regular

at the origin. whereas the spherical Hankel functions diverge at/near the origin. So
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a region including the origin can only feature the spherical bessel functions in its
expression for the field. A region not including the origin can have contribution
from either of these functions. The labelling indices are n € {0.1.2....} and m €
{0,£1.£2.....£n}. The P*(cos ) are the Associated Legendre Functions.

We have seen earlier that we can obtain a vector function L = V& which is a
solution to the diffraction equation if ¢’ is a solution to the scalar Helmholtz equation.
Thus we can define a set of functions L, in the spherical polar coordinate system :
v L v 1 dumn
é)—:m +e6-r: 02‘" +eorsin0 02 ’

L..=e, (3.2)

Since the solution ¥, are available in separated form. the partial derivatives reduce
to total derivatives since they act on functions of a single variable only. Thus we

obtain the L,,, functions as

e L dza(kr) . imo zn(kr)dPT(cosb) ;..
L.. = VLmn—A{ a0k P (cos 0)e'™%e, + o 7 e'M%ey
zn(k m .
im ) B (,C°so)e'm°eo}. (3.3)
kr sin 8

We have already seen that the M, functions can be obtained by defining M =
V x aw. where a is an arbitrary constant vector. However. for the spherical polar

coordinate system. we can obtain a set of M, functions by defining
M =V x (u(r)ve,). (3.4)

where u(r) is an unknown function that is to be determined. Thus we have

e, reg rsinfe,
M = L FR 3
T r2singl| 7 9@ 0
uw 0 0
_ 1 d(uw) B 1 (O(uv) . (3.5)
" rsinf do i 00 o 22

Now we need to impose the conditions that M has to satisfy in order to obtain the

constraining relations for the function u(r). Assuming continuity of the functions and
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(V]

their derivatives. we have

V.M = L {—Q(rzsinG-O) + 0 (8(11:4*))

r¢sinf | Or 20\ o
+i _a(uu")
do 06

_ 1 {Bz(uu') a2(uu~)}=0

(3.6)

r2sind | 9690 0609
Thus the divergence is zero for the M functions chosen according to Equation 3.4.

We require the M functions to satisfy the diffraction equation
V(V-M)-V xVxM+Ek*M =0.

In order to obtain the necessary conditions to be satisfied. let us evaluate the V x ¥ x M

term. We have

e, reg rsin fe,
v M — 1 3J 3 3
- T r2sinf| 77 k1 90
Buv) . pdur)
5:11_6 3; —sin =57
(3.7)
_ 1 . ga(uu') Singt)'z(uu') 1 d?*(uv) .
T r2siné o8 a0 d0? sinf 902 "

X 082(uw) + d?(ur)
U e [T " aree [

Therefore.
e, res rsinfle,
g 3 il
1 ar 30 Ao
VxVxM = o
risind| (- cos 2z
r2siné ) 36 R

. /v ] o 52 "

_Smga (uw) 3% (uw) 92 (uy)

262 arae Ardo
1 32(u¢'))
sinf 262




The e, component of V x V x M is

1 & (uy) _ O (urr) —0
r2sinf | 900rde  Aédrdb| —

(VxV xM), =

From Equation 3.5 we have the radial component M, equal to zero. Thus the radial
component of the diffraction equation is satisfied by the current choice of M.

The ey component of V x V x M is given by

_ 1 9 1 a (. Our)
(VxVxM)s = rsinﬁao’[ r%in@{%(sma a0 )
1 J?*(uv) _ d?*(ur)
r2sin?f Jo? or2 |’

So we can write

(=V xV xM)- e+ kM -e5 =

+ kzlll."] .

1 _0_ 9?*(uvy) + 1 _0_ X ga(uw) L &?(ur)
rsinf do | Jr? r2sin 6 96 st 00 r2sin®4 Jo?

In order for the diffraction equation to be satisfied. the quantity within the square

brackets must be independent of ¢. By following the same procedure. we obtain

(VxVxM)-e,—k™-e; =

1 9 [0*uw) 1 9 (.  duvw) 1 ?*(uv) ,

-—— - + ——— [ sin 80— — - + kfue] .

rof | or? r2sin 6 06 a0 r2sin“ @ Qdo?

As we can see. the expressions within the square brackets for both the 8 and o
equations above are one and the same. Thus the diffraction equation will be satisfied
if the quantity within the square brackets above is some function of r alone. say f(r).
In that case the right-hand sides will vanish. In particular. we can choose f(r) = 0.

so that the condition on u(r) is given by

d*(uw) 1 9 (. ,9(u) 1 (uv) .
= 6 2y = 0.
or? + r2sinf 06 (sm a6 * r2sin’d QJo? + 4w =0
In addition. if we choose u(r) = r. we obtain
9*(rv) 1 a (. ,0v 1 9% 5
dr? + rsin 0 90 ( m080> + rsin? g do? ke =0.
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The left-hand side of the above equation is equal to r- (V2 + k%w'). So for the above

choice for f(r) and u(r). we have the diffraction equation satisfied by all the three

components of M. when ¢ satisfies the scalar Helmholtz equation. Thus we have :

Mmn

V x (restmn)

Umn(V xre.) + Vi, x re,
Vi, Xt

= L. xr.

( Since V x r =0)

Therefore. we obtain the desired M,,,, functions that have zero divergence :

Mn = imz,(kr)

P™(cos 8)

sin #

e™%ey — zu(kr)

dé

dP™(cos 0)
——c

im
“e,.

(3.3)

Having obtained M,,,, we can easily obtain the other set of zero divergence func-

tions. the N,,.. since

1

Nmn = 2

|
kr2sin

l

= — r:n(kr){

kr?siné |

+ (rar:'n(kr)

V x M,

n

e,

3
dr

Jar

Since P*(cos @) is the solution to the f-part of the separated scalar wave equation.

r (im:n(kr)

)sine

reg

2
36

]

sin §

Pl(cosb) Limo
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) rsiné (-—-:n(/cr)——ap’mmsg)e

therefore
d?P™  cos@dPT m? m
8 T sne o T ("(” - sin2o> Fo=0.
Equivalently.
. 0?PM(cosb) dP™(cos §) , P™(cos 8)
—sin—2—— —cos§—2—— + m*2——~

a2

a0

sin 6

imo)

) 632P,’1"(c050) 00P,§"(cos€) +m2P,:"(c059)

T g T e sinf
dP™(cos ) : drza(kr)\ P™(cosf) imo
6 € + tm (r ar sinf 2| ¢

=n(n+1)P"(cos@)sind.

be



[
MY

This simplifies the e, term and we obtain. remembering to change the partial deriva-

tives to their corresponding total derivatives :

_ 0(B7) p o preimoe, 4. L Arznlkr) dPT(cosO) .,
Nne = nn+1)=2 o P (cosf)e er+kr ar 40 €s
1 d(r-'n(kr) Pm(COSH) lmO k¢
+ im - 2Tl = eo. (3.9)

It is of some interest to note that since the expressions for L,;,. M., and N,

have the : and m occuring as a product. we can easily derive the following useful

relations:
Lome = (=D E;‘;—Z;:L;‘m (3.10)
Me_p = (—1)’"2—21—2;5M;n (3.11)
Nopmn = (—1)"‘2—,’2;—,’71;#;,1 (3.12)

3.3 Orthogonal Properties of L, M and N Functions

Having obtained explicit expressions for the vector functions L. M and N. it is desir-
able to examine their orthogonal properties. Denoting the complex conjugate of L,

as L7, .. we have

o, dzo (k) d=, (kr)
T — L2g,mo —im's m m' 3.1
Lon - Lo ke'™%e [Pn (cos )P} (cos8) Q) d(kr) (3.13)
dP™(cos8) dP™ (cos) mm’ salhr)zs (kr)
( 70 T, + —73 P™(cos8) P (cos 6) kr)? .
On carrying out the ¢-integration, within the limits of o € [0.27]. since
2—
/ doe™Pe ™ = 2§, . (3.1
0
We obtain

2z . 9 dzp,(kr)dzz,(kr) 3
mn " L., = 2xk° m " L 3.1
do L i wk [Pn (cos8) P} (cos 8) a0 d(kn) (3.15)

0
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20 0 Tamgn

(dP,T(cosB)dP,Z‘(cosB) m? P"‘(cosB)P"‘(COSg)) o)
)2

:n(kr):;'(kr):l

Using the orthogonality relations for the Associated Legendre Functions.

L m min_ 2 (n4+m) .
/_lda:Pn (2)PE(E) = sy o (3.16)

and the following relation that we derive in Appendix C.

/:desinﬂ (dP" (cos§) dPr7(cos ) +- Pm(cosa)Pm(cosa))

db do 20 "
_2n(n+l)(n+m)!
T 2Zn+1l (n—m)

bnnse (3.17)
we obtain, on carrving out the #-integration.

2r T
/ d¢/ d0sind Lon-L.,. (3.18)
0 0

,2n(n+ 1) (n4+m)! | [dza(kr) 2 n(n+1)
2n+1 (n—m)! d(kr) t (kr)?

= 27k

[:n(kr)]z} SnntGmm-

where the square denotes the square of the absolute value. Using the recurrence

relations on the spherical Bessel/Hankel functions. with p = kr :

dza(p) _ |
dp ~ 2n+1

{nzno1(p) = (n+ 1)znsi(p)} . (3.19)

and

) = e na(0) + Sl (3.20)

we obtain. keeping in mind that the squares of the Bessel/Hankel functions denote

the squares of their absolute values in these expressions:

/Ozxdo’/o:dﬂsine Lon - L2,

drk? +
N (Qnil)QE:—:;' [n=21(kr) + (n 4+ D)2y (k)] Gnnbmr (3:21)

Similarly. the orthogonality relation between the M functions can be obtained:



V]
-1

drn(n 4+ 1) (n + m)
2n+l1 (n—m)

2 T !
/O do /0 d0sing Mp, - M., = =22 (k) S S (3.22)

Using the following recurrence relation on the spherical Bessel/Hankel functions:

l d
k_rﬂ(rén("'r)) - n +1

we obtain the orthogonal relations for the N functions :

{(n+ 1)zn1(kr) — nzppi(br)} . (3.23)

27 T
/ do / dfsind Np,-N-,,
0 0

i7n(n + 1) (n + m)!
2n+1)2 (n—m)!

[(n 4 1)22_ (kr) + 022 (A)] Sunibmmer. (3.24)

Now we need to examine the cross terms: orthogonality relations between the L.
M. N functions. The obvious ¢-integrations tell us immediately that functions with
different m’s will be orthogonal to each other. So we need to examine the behavior

of these cross terms for differing n’s only. We can write

2 zalkr)zs (k d
dé Lnn-Mp,, = —2mimk (br) e (A7) .1 — (P (cos 8) P77 (cos 6§3.25)
0 r sin 8 df

For m = 0. the expression on the right-hand side vanishes. For m # 0. the §-

integration vanishes since P™(z) = (1 —z2)d™ P,/dx™ goes to zero at the limits when

r?2 = cos?0 = 1. Thus we have the orthogonality relation (for all n.m):

2 I
/ do'/ d9sinf Lo Mo, =0  (Yom.n'.m' € [) (3.26)
0 1]

By reasoning in exactly the same way we can show that the M - N~ term vanishes

for all values of n.m :

2 e
/ do/ dfsinfd M, -N.,, =0 (Vn.m.n'.m’ € I) (3.27)
0 0




Now we examine the cross term L - N:
27 e
/ do / d0sind Lo, -N=,.,
0 0

'27rk{n’(n'+1) (Lr)dm(kr)/ dfsin@ P*(cos )P (cos @)

kr
tolkr) 1 d
+Tkr2;(h"'(kr))
T dP*(cos0) d P (cos ) m? m
/0 dfsinf ( T 7] + stGP" (cos8) P (cos 8) | ¢ bmm

By virtue of Equation 3.16 and Equation 3.17 we can see that the f-integrals will
vanish for n # n’. The only isolated case when the integral may not vanish is when

n = n’. when we can use the recurrence relations on the spherical Bessel/Hankel

functions to obtain:

2T Frg
/ d¢/ d8sind Lo, N=,
0 0

irkn(n + 1) (n + m)! .
(2n+1)2 (n—m)! [32-1(1") = Zart (k)] nnbmms- (3.

e
N
o
—

Since the right-hand side of the above equation is a real number. if we obtain

the complex conjugate of either side of the equation. we immediately come to the

conclusion that

2 T 2z =
/ do‘/ dfsin 8 L,,m-N;m=/ do/ d0sind Npn-L7 (3.29)
4] 0 0 0

Thus. the L.ML.N basis functions are not completely orthogonal to each other.
The overlap between the L and N functions for the same n requires us to consider
both the matrix elements even for cases when we are trying to expand a plane wave
that has zero divergence. However, we can easily observe that the {Ln. M, N2}
functions are mutually non-coplanar. Since they also form a complete set of functions
in the Hilbert space of all solutions to the diffraction equation. in principle one can use
the Gram-Schmidt Orthogonalization procedure to derive an orthonormal set from
the given set of functions. However. as we will see shortly. such a theoretical process
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is not required for most applications. We can use the L.M.N basis functions directly
for many types of computations.

3.4 Plane Wave Expansion in L, M, N Basis

The completeness of the set of functions L. M and N assures us of the existence of a
valid expansion series for an arbitrary plane electromagnetic wave which satisfies the
diffraction equation. in this basis set. Once a valid set of coefficients are obtained.
we can offer an operational proof of the completeness theorem. If any plane wave can
be represented in a convergent series of these functions. then it immediately implies
that the set must be complete. This follows from the fact that any scattered solution
to the vector Helmholtz equation can be constructed from a plane wave basis.

To begin our discussion. let us consider an arbitrary plane wave:
F = Ec'*™. (3.30)

Here E = E.e, + E e, + E.e. is the (oscillating) electric field of the plane wave.
k = (k.a.3) is the propagation vector and r = (r.f.0) is the position coordinate.
To keep our derivation sufficiently general. we shall allow the orientation of E and
k to be along arbitrary directions. In reality. for a plane electromagnetic wave in
a homogenous and isotropic medium, the E and k must be orthogonal. and so the
divergence of F must vanish. However at this stage we do not need to impose such
constraints. We shall also allow the E;. E,. E. and k to be complex numbers. This
represents any general elliptically polarized wave propagating in a medium that could
be attenuating/absorbing or even amplifying.

The completeness of the set of functions validate the following representation:

ereik-l‘ = Z {afnann + bfnnNmn + cfnan"} (3.31)
e,¢™ = 3 (a2, Mmn + 0% Nous + % L} (332)
ezeik-r = Z {ar:nann + b.r’n.nNmn + c:nan"} (};3)

Therefore, we can write our general plane wave expansion as:

Ee** = T {(Esa®, + E,a¥, + E.a5, ) M,
+ (Exbrn + Eybinn + £:5,0) Ninn

Y mn ~“mn

+ (Erct, + Eyct, + Eci) Linn (3.34)
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If E is represented by (£.6;.0;). in the spherical polar coordinate system. then
E. = FEsin#; cos ¢; E, = Esinf;sin o; E. = FE cos¥b;. (3.33)

Therefore. we need to obtain the nine coefficients {aZ,,.a¥%.......c5,,} which are func-

tions of {n.m.a. 3}.

3.4.1 Deriving a:, b° and &, ,

mn? “mn

It can be shown [43] that the exponential part of the expression for a plane wave can

be expanded in the following series:

) G s S AY) . .
e®T = Y (254 1)js(kr) {Z %_*_—g;P:(cosa)e"isl(cos g)e'’°

s=0 =0 (

+Xs: EZ;j;iP:(Cosa)eilBPsl(cosﬂ)e"iI"} (3.36)

=1

Let us denote e.e’** = E.. where ¢ denotes x. v or z. Let us introduce the notation:
o ) T 27
/ dr/ dasino/ do E, - X=. =/EC-X,‘M = (E[Xomn) (3.37)
0 o 0

where X, represents Lyun. M, or N, We can view (E.|M,,,) as the definition

of the inner product in the Hilbert space of all solutions to the diffraction equation.
From Equation 3.33. we can calculate the coefficients {aZ,,,.az,,.ci, .} using the

orthogonality relations already obtained. Obtaining the inner product of both sides of

the equation with respect to Ln, M, and Ny, respectively. we obtain the following

relations:
(B:[Mmn) = a5,,(Mmn|Mma). (3.33)
(E:len) = b:nn(Nmnlen> + C:nn(Lmnlen)- (3-3())
(E:len> = br:nn(NmnINmn>+Cy:nn<LmnINmn>- (340)

which can be readily solved to yield:

(E: M)

mn = :3-4].
(M M) (3.41)

Q
1
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b: —_ (E-"-IL”ln)(Lmnlen) - (Elemn)<Lmnlen)
mn (Nmnlen) (Lmnlen) - (NmnINmn)(Lmnlen)

= (E:len)(NmnILmn) - (E:[Lmn><Nmnlen>

Conn = 3.43)
(NmnILmn)<Lmn|Nmn) - (Nmnlen)(Lmnlen) (

By substituting the label z with x or y in Eqn 3.41. Eqn 3.42 and Eqn 3.43. we
immediately obtain the corresponding formula for the remaining coefficients in terms
of their inner products with the basis set functions.

The integrals represented by the various inner products in the expressions for the
coefficients require a good deal of messy algebra and careful analysis for its evaluation.
The integrands involve products of spherical Bessel functions. Associated Legendre
functions as well as their derivatives. The non-triviality of these integrations is am-
plified by the fact that one has to evaluate a double infinite summation (over s and
1) to arrive at a closed form expression for these integrals. The inner products be-
tween the basis functions are obtained from the corresponding orthogonal relations
Equations (3.22. 3.24. 3.21. 3.29). By carrying out the r-integration on both sides of

the equation we can show (worked out in the Appendix D):

(L [Limn) - = (Q:iﬁ)z EZ i :3: (;niﬂ:):‘;n—::)}) (3.4)
(Mpn|Mpg) = 2:2 (3(;1:11))2 EZ s Z;: (3.43)
(NoalNm) = (-zii T EZ s Z;: "("(;nll(t';g: i";)' 3 (346
(Lo [No) = 872  (n+ m)! n(n +1) (3.47)

Rn+12(n—-m)(2n —-1)(2n+13)

Since
e. =cosbfe, —sinfe,. (3.43)
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the integrals involving e. will contain only terms of the form P[}. where n’ can be
shown to be equal to +1 only. The integrals (E.[Mm,). (E;|Nn.) and (E.|Lx,)

therefore have the follwing form for m > 0 :

2mm?int! m —im3 b
(E:lMun) = mPn (cosa)e (3.49)
_9)-2;n—1 -im3
(ENpmn) = —or c x (3.50)

E(2n +1)(2n — 1)(2n + 3)
[n(n —m+1)(2n — 1)P7 (cosa) — (n + 1)(n + m)(2n + 3) P2 (cos a)

Q‘R‘Zin-l e—imB

Gnt)n—D2n+3)
[(n+m)(2n + 3)P7 (cosa) + (n —m + 1)(2n ~ 1)P1\(cos a)

(E:|Lmn) (3.51)

On substituting the expressions for these integrals back into Equations 3.41. 3.42

and 3.43. we finally obtain the functional form for the coefficients (for m > 0):

< i 9 -— ! R
@an(n2 1005 3) = ¥l m(2n + 1) (n m).Pr:n(COS a)e™'™ (3.32)
(m>0) nin+1) (n+m)
bin(n.m.a.3) [t (n—m)!e_im3 n(n—m+ 1)P7 (cos a) (3.53)
(m>0)  nn+1)(n+m) —(n+ L)(n + m)P™ (cosa) |
ci.(n.m.a.3) "l (n—m)! —im3 n .
(m >0) = a m(2n+1)6 COSQPn (cos a) (3.54)
We observe that when a = /2. so that E and k are perpendicular to each

other as in a plane electromagnetic wave. all the cZ,, coefficients vanish. since the
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mn

divergence of such a field is zero. When o = 0 or 7 all the af,, coefficients vanish
since P™(+1) = 0 for m > 0, and a7, vanish for m = 0 because of the factor m in its
expression. Similarly, the 6%, vanish for @ = 0 or = since P*(£1) = 0 for m > 0. and
for m =0 Py(£1)(—1)* for m = 0 so that the expression within the square brackets
become for m = 0. n(n +1).1 —(n+ 1).n = 0. So when & = 0 or = only the ¢,
coefficients can be non-zero.

When m < 0, we can arrive at the corresponding coefficients by examining the
changes that occur in the expressions for the individual inner product terms. As
shown in the appendix. from considerations of parity of the Associated Legendre

functions. we can arrive at the corresponding coefficients when m < 0:

a:—mn(n'm‘a’f}) — (__t\ym+1 2im6(n’+m)! z D4
(m >0) =(-1)"""€ n=m)! m)!amn(n.m.a.d) (3.55)
b (n,m.a.3) ym simz(n+m)t . 3 o
(m>0) ={(-1)"¢ _(n — m)!bmn(n.m.a.. ) (3.36)
Ema(nem,a.3) o aimg(nAm)l -
(m > 0) =(—-1)"e ( )'cmn(n.ma 3) (3.57)

3.4.2 Deriving a?%,,, b%, and ¢,

mn

The process of finding the x-coefficients are similar to that of the z-coefficients that
we have just obtained. However. the algebra becomes even more messy. because now
we do not have the advantage of having the symmetry about the z-axis. Again. the
detailed analysis is shown in Appendix D and we highlight only the key results from

such calculations. We have
e, =sinfcosoe, +cosfcosoeg —sinoe, (3.38)

So now. the integrals of the type (E;|Lmn). (Ex|Mmy,) and (E;|Np,) will have terms

with m £ 1 because of the extra sin ¢ and cos ¢ terms. The parity of all the parts of
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the integrands considered together(the r.6 and ¢ parts) allows only the [ = m £ 1

terms to survive. So for m > 0 :

r2gntl (n 4+ m)(n — m+ 1)P™!(cos a)e'(m~-1)3

(Bz[Mon) = m +Pm+1(cos a)eHm+1)3 (3.59)
/T2i"+1 |
mn = 3.60
(BelNone) F (ntD)(2n-1)2n+3) (3.60)
(2n +3)(n + 1)(n + m)(n + m — 1) P77} (cos ar)e=ilm—1)
—-(2n+3)(n + 1) "‘H(cosa)e""("”"”'j
+(2n = 1)n(n —m +2)(n — m + 1) P73 (cos )i (m 1)
—(2n — 1)n Pt (cos a)eHm+1)
w2ntl
(BelLmn) = - x (3.61)

(2n + 1)(2n — 1)(2n + 3)
(2n 4+ 3)(n+ m)(n + m — 1) P (cos a)e~i(m=13
(7n + 3) m-iil( —i(m+1).3
~(2n = 1)(n = m+2)(n — m + 1) P77 (cos a)e~im =13
+(2n — 1) P (cos a)e~ilm+113

cosa)e

Using these expressions we obtain:

Gma(mem-e.d) g Gt l) (n=m) (3.62)
(m20) n(n+1) (n +m)!
(n+m)n—m+1)P™""Ycosa)e{m-1)3

+Pm+l(cosa)e~mt1

bz (n.m.a. 3) _ el 1 (n —~m)! g
(m2>0) 2n(n+1)(n + m)!
(n+ L)(n+m)(n+m-—1)P ' (cosa)ei{m-13
—(n+ 1)P (cos a)eilm+1)3
+n(n —m+2)(n ~m+1)Pl7 (cosa)eilm-1)3
—n P (cos a)e~ilm+1)3

(3.63)




Can(nm.e.3) ™ (n—m)! 3.64
(m>0) =~ 2k (n+m) (3.64)

(n+m)(n+m—1)P" 7 (cosa)e(m=1)3
— P4 (cos a)e~ilm+1)3

)

)
—(n—m+2)(n —m+ 1)P7 (cos a)eim=1)3
+ Pt (cos a)eimF1)

For m < 0. the easiest way to obtain the coefficients (explained in Appendix D)

are the following recipes:

(n+m)! [aZ_ with e “mEU3 factors

z — m+1 mn 9 p=

Cmn = (1) (n —m)! |changed to e{m*13, (3.65)

(3.66)

bE = (=1)" (n+m)! [bZ,, with e‘."("‘*”a factors] (3.67)
e (n —m)! |changed to e!(m*1)3, ]

(3.63)

<= (—1)m (n+m)! [c=, with e={mE03 factors] (3.69)

(n —m)! [changed to e(m*1)3.

3.4.3 Deriving a¥,,, b¥, and ¢,

The y-coefficients are obtained almost identically as compared with the x-coefficients.
We realize that the only difference between the two sets arise primarily because of
the interchanging of the cos ¢ and the sin @ terms due to e, being replaced by e,. We
have

e, =sinfsinge, + cosfsinoes + cosoe, (3.70)

As explained in detail in the appendix(D). the o-integration will cause a change in
the sign of the m + 1 terms while the m — 1 terms will continue to have the same
sign. Also. an extra factor of —i is generated because sin 0 = (1/27)(e'® —€e~**). Thus

following this general recipe we obtain the y-coeffcients:
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a? (n.m.a. j3) R 2n+1) (n—m)! 8

(m=0) 2n(n + 1) (n + m)! (3.71)
(n+m)(n —m+ )P} (cos a)e™(m-1)
—Pmtl(cos a)eim+1)d
—_ }
b (n.m.a.3) - 1 (n —m)! y 552)
(m>0) 2n(n + 1) (n + m)!

(n+1)(n +m)(n+m—1)P "7 (cos a)eilm=1)3
+(n + 1)P™* (cos a)eim+1)3

+n(n —m+2)(n —m+ )P (cos a)e~H(m—1)3
+nPA (cos a)e~imF1)3

_m n—m)! g
3% (n £ m)!
(n+m)(n+m—1)P™ 7 (cos a)e~ilm—13
P"“H(cos a)e~im+1)3
—(n—m+2)(n —m + )P (cos a)e~i(m—1))
P,;T[l(cos a)e~im+1)I

Transformations similar to what was used for the x-coefficients for m < 0 are going

to be valid for the y-coefficients as well. Thus the y-coefficients for negative m can be

obtained as follows( note the extra (

—1) factor as compared to the x-transformations):
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o = (_I)m(n + m)! [a¥, with e~ (m£13 factors (3.74)
(n —m)! [changed to e!(m*1)3,

(3.73)

W = (=1)mt (n+m)! by with e~imED3 factors| (3.76)
" (n —m)! |changed to e{m*1)3, ]

(3.77)

S = (=1)mt (n+m)! [er, with e={m*13 factors] (3.78)
" (n —m)! |changed to e/(m£!)3, ]

3.4.4 Numerical Convergence of Basis Function Expansion

It may be pointed out that these coefficients for the expansion of an arbitrary plane
wave in terms of the L, M, N basis are not necessarily unique. Alternate sets of
expansion coefficients can be obtained by. say rearranging of the basis. This follows
directly from the general theory of orthonormal basis in Hilbert spaces [37]. Since
one can expand any plane wave in this basis. as discussed earlier. one can obtain an
operational proof of the completeness of this basis. It is also important to realize
that simply proving completeness of a set is not the last word in computations.
One has to address the question of convergence as well. So numerical verifications
are absolutely necessary to validate a certain basis set. To summarize the results.
convergence of better than 1% is normally achieved by taking terms up to index n.
where n ~ 1.4Jkr|. This can provide us with the guideline on how many terms to
include for a problem in which the geometry can be measured in units of A. the
wavelength of the electromagnetic field in question.

In Figures 3.1 and 3.2 we show the expansion of arbitrary electromagnetic waves
in the L, M, N basis. We have specified an arbitrarily directed wave vector k
with direction cosines a and 3. with the electric field oriented along some arbitrary
direction specified by the angles 8, and ¢.. The values of the exact expression for
Ee’¥t and the series expansion in the L, M, N basis are compared along some

arbitrarily specified line directed along (6.0). We observe that the convergence is

very good for |kr| £ 0.75n and this is fairly independent on the choice of the specified
directions for E and k as well as the path along which the comparison calculations

are done. In Figure 3.1 the wave vector is real where as in Figure 3.2 the wave
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vector is complex. Complex wave vectors correspond to an attenuating or amplifving
medium. We therefore demonstrate that these functions can be used to expand an
electromagnetic field in a general medium. Since the specified E and k are not
orthogonal in general (as in the above two cases), it is therefore possible to expand
waves that are more general than plain electromagnetic waves in a non-attenuating
medium. Later we will also examine the possibility to obtain the solution of Maxwell

equations in the presence of sources. using the L, M, N basis.

3.5 Numerical Evaluation of L,,,, M,,, and N,

Numerical evaluation of L,,. M, and N,,, require us to obtain the values of func-
tions of 8 such as ;(,P;"(cos ). 5‘";5%8—) and functions of r such as %%(r:"(lcr)) and
'—"%. It is clear that one has to exercise caution in evaluating these functions close
to 8 =0 or = and r = 0. In this section we indicate numerically stable computational
equivalents to these functions.

From Equation C.11, by adding the third and the fourth equations we eliminate

the £ P™(r) term. and so we obtain:

d

m-—1 _ m+1 :.-‘
d.l (E) .)\/I—_——sz-[ m+]. (n+7n)P ( ) Pn (l') . (}l())
and since
d d
m — p2____pm¢( .. 3.8
_dHP" (cos ) = l - dIP" (). (3.30)
Therefore:
d ]' m+1 m-—1 Qo
7 P (cos) = [P (z) = (n = m + 1)(n + m)PP"Y(2)] . (3.81)

From the definition of the Associated Legendre Functions (m > 0):

g m d
PMz) = (=1)™(1-2%)7 ()

drm "
m dm
= (=1)zsin™ §——P,(x). (3.32)
dzrm™
where P,(z) are the Legendre Polynomials and r = cos §. we immediately obtain:
w= (-1)% sin""lﬁd—Pn(cosH). (3.33)
sin dxm
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When m # 1. clearly the right hand side is zero when § = 0 or 7. So. when m = I.

Pl(cos ) d

=~ Pala). (3.84)
From Legendre’s differential equation:
5, @ L d .
(1 =z2°)=—=P,(z) = 2z—P,(z) + n(n+ 1)P,(z) = 0. (3.89)
dz? dz
we obtain
d (1= & n(n+1) o
Ir’Pn(I) - 27 Fpn(r)'*' 27 Pn('r) (306)
= 31——P3(1') + II(—ZJT—UPH(.I:) (Using m = 2 in the defn. of P(r)).
2r 2

When r = +1. then P*(z) — 0. Thus:

i(,ici:ﬂ = 0 whenm#1 (3.37)
sin
= _n(n.)-l- 2 when r=1.m=1 (3.88)
1
= (—1)""(”—j—) when r = —1.m = | (3.89)
L .
= — whenr=1.m=-1 (3.90)
2
= (-l)"“% when r = ~1.m= -1 (3.91)

The functions involving the spherical Bessel and spherical Hankel functions of the

first kind for kr — 0. are best evaluated by using the following recursion relations:



zn(k 1
l(crr) = (2n +1) [zn-1(kT) + za41(kr)] (3.92)
d 1
d(k'f’):n(kr) = Gl [nzp1(kr) — (n + 1)zap1(kr)] (3.93)
1 d |
g k) = Gt (k) = nzan(bn)]. (394

Here. the z,(kr) represents either the spherical Bessel or the spherical Hankel
functions of the first kind where n > 1. The argument kr could be complex in
general. We do not require to evaluate these terms for n = 0 since the L. M and
N functions are zero for n = 0. The absense of 1/kr factors on the right hand side
allows straightforward evaluation of these functions as Ar — 0. [t is of interest to
note that the field on the z-axis will be given only by the m = 0.+1 terms. due to

the vanishing of the other 4 P™(cosf) and Pi(cos8) fynctions on the z-axis.
<) dé " n sin 8
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Chapter 4

Shell Problem

4.1 Introduction

As an application of the method of solution by expansion in vector eigenfunctions. we
consider a problem of current interest. We shall solve the electromagnetic problem
of scattering from concentric spherical shells. There is a lot of interest to understand
the electromagnetic response of nanoparticles that have a shell or coating of some
other material. We shall solve the problem for a single shell. However. it would be
fairly obvious that the method can be generalized to the problem of multiple shells.
An underlying assumption of this method is that the macroscopic dielectric function
of a particular material continues to be applicable in the nanometer regime as well.
For clusters larger than a few hundred atoms and for shell thickness greater than a

few monolayers. this is usually a valid approximation.

4.2 The Model

A sphere is centered on the origin. of radius R, of a material with dielectric function
€1(w) ( Figure 4.1). Surrounding the sphere is a concentric shell of radius R, of a
material with dielectric function €2(w). The dielectric functions are complex functions
of frequency of the electromagetic radiation in question. The sphere and shell are
embedded in a medium. the dielectric function of which is specified as e3{w). Without
loss of generality. we shall assume that we are dealing with non-magnetic materials.
so that the relative permeabilities of the three region are approximately unity.

A plane wave of unit intensity is incident along the z-axis. with its polarization
along the x-direction. By symmetry, it doesn't make any physical difference in the
choice of the incident direction. However, the expansion coefficients for the plane
wave in the {M.N} functions assume simple expressions when the wave is incident
along the z-axis. In this coordinate sytem k is specified as (k.a = 0. 3 = 7/2). Thus

amn = a%, and bn, = b%,,. Since the divergence of a plane wave is zero. we can
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Figure 4.1: Shell-geometry with single shell. There are three spherically
concentric regions indicated. The core has dielectric constant ¢,, the shell
has dielectric constant e¢; and the exterior has dielectric constant ¢;. In
general there can be more number of shells.

expand the incident field in the M and N functions alone. The scattered waves are
the ‘forced’ solutions. and they will assume the same form as the incident waves at a

given frequency. and so they too can be expanded in the M and N functions only:

E =) {amnMmn + bmnNmn} . (4.1)
mn
Now for a plane electromagnetic wave H = ﬁv x E. Therefore:

H = Tl—'z{amnVXan+bmHVXNm"}

lwll mn

= —-1—- Z {a,,m/men + bmnkan}

lwl‘l mn

= —i\/EZ {bmnMumn + @GmnNum }. (4.2)

Using @ = 0 and 3 = 7/2. only the n > 1 and m = £1 coefficients turn out to be

non-zero. We obtain for the expansion coefficients:

: 2n+1
I T 2 — n4l =77 F - :
at (n.1.0.7/2) =1 T (1.3)
Ti. = nn+1lap, (1.4)

—-1n

r
aln

a



2n+1
b, = b (n.1.0.7/2) ="t —u— .3

b = —n(n+ 1), (4.6)

Let us represent the core as region 1. the shell as region 2 and the exterior as
region 3. Let us assume the following form for the solutions of the scattered E field

in the three regions:

0
1 1) 1), -
B = 3 {abh Ml + ol NEL (4.7)
2); 2 2 2)h A a(2)h 2)h ny(2)R s
E; = Z{ 25 MPY, + o2 Nm o2h MAE £ 528 NORL (48)
N3k agB)E | 1(3)h (I
E; = Z{aﬂ:ln Miin + b:1n Niin (+.9)
=1

The +1 indicates the two choices for the value of m. The superscripts identify the
region and the type of function being used. For example. the h superscript in M 2"
represents the M functions that are derived from the scalar solution that uses spherical
Hankel functions of the first kind for their radial part. The j superscript represents
functions that have spherical Bessel functions for their radial part. The numeric
label identifies the region and so the value of & at the frequency of the incident

electromagnetic wave. Specifically. we have (with m = £1):

M = imjn(klr)ﬂ‘%l%ia—)eim"eg—jn(klr)flﬁz(-g—;?ig—) imoe., (4.10)
MY = imja(kar) O imag, () LD e,
M@ = imh N (k, r)%’gig—)e‘meg—hg)(kzr)i‘{f%(l;—"sﬂeimc’eo (4.12)
MGV = imjalkor) O imag, (k) DO e, a1y
M)A = imhN (ky r)—s(;‘;ﬁle‘meo—h;1>(k3r)ﬂ;;°—w)e""°eo (4.11)

N = n(n +1)J"”‘1 ) pr(cost)emee,
l
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+ki_rd(rj:1£k1r) (dpén;;“o)e‘me”i P”;(;lc;sﬂ) ’"‘"eo) (4.15)
N@J = pn+1)~2— /E’; )P”‘( cosf)e™ e,

+kl—rd(”2£1°2r) (dP’T ;gosg)e‘m%wim-———P:(I::g) ""°eo> (4.16)
NGk (n+1)M2—lP;"(coso)efmoe,

kor

+Ei7d(rh€1:(k2r) (dP’"(E;osH) moey 4 im P":(I:;se) ,m%) (4.17)
NGO = n(n+1), (3 1U5T) pm(cos0)eime,

+E§_d(m:h(n/t3r) (dP;";;osﬂ)eiméeo_*_i P";(I(;'logsﬂ) """eo) (1.18)
N@# = n(n+1)—h$‘l;:;3r)P,:"(cosﬁ)ei""’er

+1£—rd(rhi)r(k3r) (dP,;";;ose)eimoea+l,mP";(:lo;0) '"‘°eo> (4.19)

Since region 1 includes the origin. only the spherical Bessel function solutions are
allowed. The spherical Hankel function solutions are singular at the origin. In region
2. which does not include the origin. we can therefore have both the spherical Bessel
and spherical Hankel function solutions. Region 3 does not include the origin. So we
assume an expansion in the spherical Hankel function solutions only. The spherical
Bessel function solutions are included in the expansion of the incident field in region
3. Far away from the origin, where the scattered solution must become negligible. we
must recover the plane wave field of the incident wave only. Thus this regularity at
infinity restricts the scattered solution in region 3 to have only the spherical Hankel
function solutions. The incident field itself has to be regular at the origin (since
the choice for locating the scattering object at the origin was purely a matter of
convenience) and so it is expressible only in terms of the spherical Bessel function

solutions:

)

3 34 .
S {agi, MEY +85,, NI} (4.20)
n=1
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The expression for the magnetic field intensity H in the various regions are:

. €3 & ;
H = —z\/#—sZ{aim NEY + b7, MEV} (4.21)

n=1
&1 1 1)j 1) 1)j N
Hy = -/ L5 (ol NG + 50 MUl (4.22)
yard
3 2 2)j 2 2 2)h nj(2)R 2)h » r(2)h 5
H, = —i\/ 23~ (a2l NG+ 620 MEY, 4ol NEE + 62 MER(123)
n=1
€3 3)h N(3)h 3)h § x(3)R )
H; = Z ol NEI + 681 MEN ) (1.21)

M3 Az

It is easy to generalize to the case of multiple shells. Every additional shell will
have its solution expressible in the form given by Equations 4.8 and +.23. We have a
set of four independent equations from the boundary conditions for each interface. A
single shell problem with two interfaces has eight independent equations from which
we can obtain the sets of eight coefficients {a!{}”,a{® a{@" {3 p{1li p2s g2 3y
Similarly for a problem with V shells with .V + | interfaces. we have sets of 4.V + 4
unknown coefficients and 4.V + 4 equations from the boundary conditions to solve for

them. We shall soon see that the solution for such systems are completely determined.

4.3 Expansion Coefficients of the Scattered Wave

We shall consider the equations of continuity of tangential E and H only. The e4 and
e, vectors will serve as the two independent tangential unit vectors. Let us consider
the spherical interface at r = Ry. The continuity of the tangential components of the

fields give us the following equations. valid for all points on the sphere at r = R;:

E; e v, = E; e =R, (4.23)
E, - e e, = E,- eg|r=R‘ (4.26)
H,-e, er, = H,; e, =R, (4.27)
Hi-e _, = H; - e| _n, (4.28)




Similarly, the equations from the surface at r = R, are:

E;-e; r, = E;z-e, . E;-e, =R, (4.29)
E2 " €4 r=R; = E3 " €6 r=R; + Ei ’ eol =R, ( : 30)
H2 ¢ eo r=R, = H3 * eo r=R, + Hl * eo r::Rz (4-'31)
H2 - €y ey = Hj- e - + H,’ . eg|r=R2 (4.32)

The expressions on both sides of the boundary condition equations above are functions
of § and o only. The o¢-parts are of the form e¥**. Multiplying both sides of these
equations by €~ and integrating with respect to ¢ over the interval o € [0.27] will
decouple all the m = 1 equations. Similarly all the m = —1 equations are decoupled.
The expressions on both sides then reduce to being functions of 8 alone. C'arrying out
similar integration of both sides of these equations with respect to 6 over the interval
9 € [0.7] could decouple the different n’s. leaving us with linear equations in sets of
the desired unknown expansion coefficients of order n.

Let us consider Equation 4.25:

2 ) .
Ei-e, = Y SHI MY e b(ill)ﬁl N -eo} and. (4.33)
n=1
E;-e, = Z {a@ M@, - e, + 20 NEY ey + ol MENL - oo + 650 NN - e, }
(4.34)
Now.
M. e | = —JulkiRy)— d P’"(cosO)e”"" (4.33)
mn -] r=R, LAY B 25 do .
- ) Il d P (cosf)
: (1) . , —_ on AN zmo :
And. N,/ -e, R, im (klrd (r_),,(lqr)))mﬁl ey (4.36)

Multiplying both sides by sin?d P™(cosf)e~"™° and integrating within limits of 8 €
[0.7] and o € [0.2#]. and observing that

g {
/ d0 sin? P™ (cosf)~— P™(cosf) = O. (4.37)
0 do
= ) m m 2 (n+m) o
and /0 dOsinf P (cosf) P (cosf) = il m) (4.38)



19

the coefficients of all the a,,, terms will vanish. On simplifving both sides. we obtain
the equation:

(1 d . (1 d .
b4l (k—‘d—(7'Jn(/fl7”)))r_Rl - o¢0 (r_d_(rjn(kzr)))r=Rl
g [ d () :
Ok \ ("h (lwzf')) =0 (1.39)
r=R;

Similarly. when considering Equation 4.26. only the coefficients of the a,,, terms
will survive. The integration procedure is identical to that used for obtaining Eqn 4.39.
Carrying out the procedure. we arrive at:

i (julki R)) = a8 (jalke 1)) — a@ (RO (K2 R))) = 0 (4.40)

To obtain the equations from the continuity of tangential H. we observe that by
virtue of Equation 4.2, we can use the corresponding equations derived for the con-
tinuity of tangential E by interchanging the an, and by, coefficients and appending

an extra factor of \/E Thus Equation 4.27 for continuity of tangential H along e, is
obtained as:

ay [l d o @ [e(Ld ..
i\ (klrdr (rjn(kir)) n £in 7 k.;r(lr(rjn( ar)) .
on (€[ 1 d (1) _
— a2t 2( - (rhM (kyr) -, =0 (4.41)

and Equation 4.28 gives us the continuity of tangential H along ey :




i €1 . ; € .
bgl)fz _1]n(k1Rl) - b(izl)fz 'i.]n(k?.Rl) (4.42)
V “ V K2
— bl (,/ﬁhﬁ”(kgm)) =0.
H2

Similarly the equations for the interface at R, are obtained. Continuity of tan-

gential E along e, gives us:

(1 d 1 d
(2)j - (2)h (1) 1., :
+biin (_kzr—dr (T‘Jn(lvzr))) + b0, <—k o™ (rhn (k;r))) (4.43)

r=R; 2

1 d 1 d
LY (1)1 — BT L
b:tln (ksr dr (T‘hn (k3r)))r=R2 biln (k:}r dr (r_]n(ll3r))) Rl .

And the continuity of tangential E along eg at r = R, gives us:

a8l (jn(k2Ra)) + a2l (A (ko R2)) (4.44)

— S (KD (ksRa)) = afy, (ks Ra)).-

The continuity of tangential H along e, at r = R; gives:

@ [ (L d .. @n [ (1 d o ay -
aiiy, o (erdr(rjn(Lgr))) +aii, 2 \Togr dr (rhn (l.zr)) (4.43)

r=R>

_a®r S LD g e e L4
a:tln #3 (kgr d‘l‘ (T‘hn (‘l‘3r)) =R, ‘a:i:ln [3 /\'37‘ (17‘ (r.}n(A.'B’)) . .

Finally. the continuity of tangential H along eg at r = R, gives:




b (\/'Eljn(kzlﬁ)) + b0 (\/Ehgl)(kQRz)) (4.46)
H2 2
— b2 (,/6—3 hf}’(kst)) = b, (,/6—3jn<k332>) .
H3 K3

Thus. for each n, and m = %1, we have a non-homogenous system of eight equa-
tions in eight unknowns, and the system is straightforwardly solved. If we set €; = e,.
making the shell and the core the same, then we obtain the solution to Mie scattering.
By using the formalism discussed above, a direct solution of Mie scattering could be
obtained by solving a simple 4 x 4 system of equations.

In Figure 1.2 we show the result of our calculation on a glass sphere coated with
a thin gold shell. The glass sphere (¢ = 2.5) and the gold shell have a combined total
diameter of 2\ where A = 620nm. The dielectric constant of gold at 2eV (620nm) is
—10.885 + 1.348¢ [24]. The thickness of the shell is reduced from 0.15A to zero. When
the gold shell is sufficiently thick, in excess of several skin depths. the optical field is
unable to penetrate the shell. Thus the field inside the sphere will be close to zero.
When the shell is made thinner, the optical field ‘leaks’ into the cavity formed by the
sphere-shell system. Interestingly. the trapped photons give rise to fields inside the
cavity that are stronger than the incident external field. The mode patterns emerge
naturally as a result of solving the boundary value problem of the shell-core model.
When the gold shell is made sufficiently thin. so that it can be considered a glass
sphere only, we observe the familiar effect of lens action. the incident light getting
focussed at the opposite end of the sphere. It is evident from these calculations that
the screening action of a thin gold shell is remarkably efficient as far as the external
field is concerned. The external field itself is not seriously perturbed until the shell
thickness is made less than 0.05\. In other words one could not differentiate a solid
sphere of gold from a glass core with a thin gold shell by observation of the external

scattered field alone.

4.4 Poynting Vector Calculations

The mean intensity of energy flow at a point in an electromagnetic field with sinusoidal

time dependence is given by the real part of what is defined as the complex Poynting
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Figure 4.2: Scattering from glass sphere coated with a thin gold shell. The
total diameter of the core-shell scatterer is 2A. The thikness of the gold
shell is reduced from 0.15\ (top-left) to zero (bottom-right). Incident light
is directed from the bottom of the page with polarization pointing out of
the page. White represents larger fields.



vector, S:
1 N -
S=;EXH. (+.47)
So, the mean intensity of energy flow is given by
= 1
S = 3Re(E x H7). (4.43)

Although it is only in the far field that this quantity has the simple physical picture
of energy flow from a plane wave field. it is still instructive to study the pattern of
energy flow in the near field. If we observe the energy flow through a spherical surface.
concentric with our scattering object, we can study the relative energy flow from the
wave field into the scatterer and vice versa. The knowledge of this near field energy
flow and distribution is important for example in the understanding of radiation-
induced interactions of adsorbed atoms/molecules on surfaces of nano-particles.

In order to evaluate the energy flow per unit area. using the complex Poynting
vector formalism. we need to calculate the total E and H and obtain the dot product

of S with e.. The radial component of S is given by
1
§[Eo H;—-E,Hj|. (1.49)

Since the E and H fields are expressed in terms of the M and N functions. both
of which are represented by distinct orthogonal components in the spherical polar
coordinate sytem. it is relatively straightforward to obtain the value of the expression
above. We show the results of such a calculation for gold clusters of radii. R = 20nm
and R = 100am. with 2eV (620nm) incident photons in Figure 4.3 . The observation
point is located on circles with different radii. b. concentric with the cluster. We let b
vary from the near field (baR) to the far field (b>>R). As explained earlier. by setting
both the shell and the core equal to gold. we converge to the equivalent problem of Mie
Scattering. It is clear that the energy flow in the near field is fairly non-intuitive. For
certain configurations. the near field energy flow is negative. opposite to the normal
far field scattering solution which invariably has positive energy flow outward from
the scattering object. However. the knowledge of such electromagnetic interactions is
vital to our understanding of certain cluster properties. Our results are in excellent
agreement with other published works [26] on gold clusters using Mie's theory. This
provides us with a simple test against which to check our formalism of basis function

expansion for the solution.



R =20nm

0.05 120 9°%
b=21nm 150 30
180— —o
210" 330

240~ 5300

0.01
120- 3950
150 .00053

180 — o 0

-

2100 -7 330

240~y 300

0.002
120-99=Tg0
159 00013

-0
210 7 330

240 ~270/300

e-06
1;0/90160
155 . 2e-08y
29 7 330
24000 300

0 90

R=100nm

902

1.5 _ 120 60
LA LLLL BERT TR R
180 &
05 o O o
210 ° 7 330
oL 240 ;0 300
0 90
1
1 : 120 9" 6o
b = 150nm 150 .95 30

210 330
0 240 0 300
%10 %0
1 900.0001
b = 10000n 120 60
150 . . 9e 05
210 330
0 240 ;. 300
0 90

Figure 4.3: Poynting vector calculation for scattering from gold cluster.
The incident light at 2.0eV is incident from 8 = 0°, with the polarization
directed out of the paper. Scattering from two cluster sizes, R = 20nm
and R = 100nm are shown, where b is the radius of the observation points.
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4.5 Numerical Calculations of Total Cross-Section

As shown in the appendix(E. we can obtain the exact expressions for the total cross-
section and the scattering cross-section of spherically symmetric particles such as the
single shell particle/object we have been considering. The results apply to any multi-
shelled particles as well. The expression for the total cross section in terms of the
scattering coefficients is :

D < 2 2

Ehe X m,—:l}ll—) {afa (a2 + 07, (63")} - (4.50)
where af, and b, are the usual expansion coefficients of a plane wave incident along
the z-axis with its polarization along the x-direction. The symmetry allows us to
consider any general plane wave. but the algebra is simpler for the above choice
of the incident plane wave. a'® and b3* are the scattering coefficients for the
exterior region of a single shell scatterer and should be substituted with the relevant
coefficients for the exterior region in a given general problem.

The net ertinction or attenuation of incident energy in an electromagnetic wave
propagating through a medium consisting of a random distribution of scatterers is
directly proportional to the total cross section of the particles. It is assumed that the
distribution is sufficiently dilute and random so that there is no mutual interaction
or interference among the scattered waves from the individual particles. For many
experimental situations. such as colloids in solution. this is a very reasonable assump-
tion. Thus the theoretical computations on plasmon resonances in such particles can
be verified against experimentally observed absorbance/extinction spectra.

As another test for our solution to electromagnetic scattering from coated nanopar-
ticles. we compare the plasmon resonance in gold colloids. Figure 1.4 shows us the
experimentally obtained absorbance spectra of gold colloids. of approximately 6nm
radius. in an aqueous solution. In the model calculations. we set both the shell and
the core as gold. In the same figure we also show the calculated total cross-section of
spherical gold particles of 6nm radius surrounded by water (n = 1.78). To do the cal-
culations we provided the known dielectric function of gold within the range of 100nm
to 1100nm [24]. We assumed the dielectric function of water to be a constant within
the same spectral range. There are no adjustable parameters in this calculation. The
only input is the particle size. which is also experimentally determined [7] by TEM
measurements. The resonance at ~3520nm is satisfactorily reproduced. including the
aspect ratio of the peak to the satellite valley at ~450nm. The experimental graph
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shows a peak at close to 970nm and that is attributable to water. There are small
differences in the peak position as well as the general shape and width of the peak.
These differences could result from several factors. including the presence of a shell
layer surrounding the particles. Without adequate experimental verification. such
differences could be accounted for theoretically by using our general formalism for
the shell problem. In the following sections we shall study some of the qualitative
aspects of the result of a dielectric shell on a core of a different dielectric. Due to
subtle interaction between the three media. the core. the shell and the exterior. both

the location of the peak and its shape can undergo dramatic changes.

4.6 Test Dielectric Functions

For calculations of plasmon resonances in single or multi-shelled particles. we need
information on the complex dielectric functions of the various materials in question.
Although the optical constants are accurately known for a number of materials. it
is still not an exhaustive list. There are many materials of current research interest
whose optical constants are not known in any great detail. [n order to study model

systems, we therefore consider the process of obtaining a -test dielectric function’.

PLASMON RESONANCE IN GOLD COLLOID(R=6nm)

T L

EXPERIMENT

%00 500 600 700 800 900 1000 1100
WAVELENGTH(nm)

Figure 4.4: Plasmon Resonance in 12nm Gold Colloids in Aqueous
Solution



ot
=1

In principle. the known absorbance of a material can provide us with its complex
dielectric function by using the Kramers-Kronig relations. In theory this demands the
knowledge of the absorbance/extinction function for all frequencies. The conversion
from an extinction coefficient k(v) spectrum to a refractive index spectrum is given

by:
An(v;) = n( )

= —P/ dv —u2 (4.51)

where P indicates that Cauchy’s principle value of the integral on the right-hand
side is obtained. To perform a numerical Kramers-Kronig transformation. we assume
that k(v) is given as a sequence of discrete values k;. at m frequencies v; with equal
interval in between each v; :

v, Vg V3 ... Vj ... Um_1 Vm

ky ky ks ... kj ... kmoy knm

Since An(v;) has poles at each v;. we can evaluate the integral numerically by
considering only every other point so that computations at v = v; are avoided. Thus
when iis an odd number (1. 3. 5....), we perform numerical integration by considering
v only at the even numbered frequencies and vice versa. For this method to be of any
use. the extinction spectrum k(») must go to zero at both ends of the entire range
of v being considered. Such spectra are difficult to obtain experimentally. However.
one could construct a model dielectric function by specifving a suitable extinction
spectrum that vanishes outside the interval of interest.

Another approach is based on obtaining an exact analytic formula for a model
extinction function that is also specified in a closed form expression. In particular.

we consider a double-Lorentzian function for the extinction coefficient k(v):

k(v) = kmax (7/2)° _ kmax (7/2)° (1.52)
(v =)+ (7/2)° (v +v0)2 +(7/2)

where kmax is the maximum value of k. at frequency vy and + is the bandwidth at half
height. It can be shown that the corresponding expression for the An(v) spectrum.
obtained by taking the Cauchy’s principle value of the integral in Kramers-Kronig

relations is given by:

(4.33)

o ‘ (v+w)(1/2) (v —w)(1/2)
An(u)_n(x)-#kmax{( +09)2 4+ (7/2)2 (v =)+ ( //2’}.
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Clearly, the addition of the second term in the expression for k(v) automatically
satisfies the conditions: k(v) = —k(—v) and n(v) = n(—v). The real and imaginary
parts of the complex dielectric function. é = €, +¢; are related to the refractive index.

n. and the extinction coefficient, k, by the following relations:

e, = n:-—k? (1.54)
1

e = 2nk (4.5

no= {0-5 (\/6$+e?+er)}1/2 (4.56)
L = {0.5 (\/6,2.-*-6?—6,.)}1/2 (4.57)

In Figure 4.5 we show the results of our calculations of the total cross-section of
a gold nanoparticle of 5nm radius with a dielectric overlayer of 1nm thickness. The
dielectric function used is obtained from Equations 1.52 and 4.53 with k.., = L.
+ = 0.5eV and vy is made to vary between 2.2eV and [.2eV. n(oc) is set to 1.5. a
value typical of many organic and glassy materials that are transparent in the visible
range of wavelengths. The important feature that emerges from this calculation is
the appearance of a distinct second peak in the total cross-section spectrum of gold
nanoparticles. The position and shape of this peak is distinct from that of the cor-
responding peak in the extinction spectra (k). This illustrates the subtle interaction
between the dielectric functions in determining the overall plasmon resonance in a
core-shell geometry.

In Figure 1.6 we show the calculations on a gold core of 5nm radius. with a
dielectric shell of varying thickness. The test dielectric in this case is specified by
kmar = 1. v = 0.3eV. n(c0) = 1.3 and vg = 1.5eV. We observe significant relative
changes in the two peaks. The plasmon resonance peak at ~ 500nm shifts towards
longer wavelengths. Also the ratio of the peak to the valley at ~14350nm increases as
the shell thickness increases. The peak at ~750nm shifts towards longer wavelenghts
as well. This indicates the importance of an ‘interfacial’ laver in determining the

plasmon resonace.

4.6.1 C60 Coated Gold Nanoparticles

In Figure 1.7 we illustrate the subtle interaction between real dielectric media in a
core-shell geometry. We simulate a shell of Cg on top of a gold core. The experi-

mentally determined dielectric function for thin films of Cg have been used for this
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Figure 4.5: Total scattering cross section (in m?) of gold nanoparticles,
of 5nm diameter, coated with a shell of Inm of a test dielectric whose
refractive index, n, and the extinction, k, are also indicated. k.., = |,
~+ = 0.5eV and vy is varied between 2.2eV and 1.2eV.
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Figure 4.6: Total scattering cross section (in m?) of gold nanoparticles, of
5nm diameter, coated with a shell of varying thickness of a test dielectric
specified by kn.. = 1, v = 0.5eV and » = 1.5eV. The peak positions and
shapes change as a function shell thickness.
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Figure 4.7: Total scattering cross section of gold nanoparticles, of 5nm

diameter, coated with a shell of Cg,. The peak at ~ 520nm shifts towards

longer wavelengths as the thickness of the shell is increased from Inm to

10nm.
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calculation [32]. The striking feature in this simulation is the shift in the plasmon
resonance peak at 520nm towards longer wavelengths as the gold core is surrounded
by increasingly thicker shells of Ceo. The gold core is kept constant at 3nm. and the
Ceo shell increases in thickness from Inm to 10nm. It is also interesting to note that
the gold core makes its presence felt even when inside a relatively thick shell of C so.
Also. the steepness of the slope and the width of the gold-plasmon peak changes as a
function of its environment. This clearly indicates the importance of the role played

by the medium surrounding a given nanoparticle in determining its optical response.

4.7 Plasmon Resonance in Gold-Sulfide Systems

There is considerable interest in the scientific community to understand the physics of
colloids. In particular. interest in gold-coated nanoparticles has led to experimental
observations that are not understood satisfactorily from a theoretical point of view.
As we have seen earlier. pure gold colloid (size ~ 10nm) in an aqueous medium
lead to a plasmon resonance peak at approximately 520nm. However. a system of
gold-sulfide nanoparticles coated with a layer of gold exhibit remarkable dynamic
complexity in its absorption spectra. An absorption peak. distinct from the 520nm
resonance. undergoes characteristic non-monotonic shifts.

In Figure 4.8 we show a typical experimental situation [7]. The formation of Au»S
colloids is initiated by mixing together chloroauric acid (HAuCl,) and sodium sulfide
(NayS). This is indicated as t = 0. As the reaction proceeds. absorption spectra
are obtained at intervals of a few minutes. Two distinct peaks are seen to evolve.
There is the usual peak at 520nm which essentially does not undergo any shift. The
other broad peak is at somewhat longer wavelengths and is observed to shift initially
towards longer wavelengths but subsequently reverses its direction of shifting towards
shorter wavelength. It has been speculated in the literature that such shifts are due to
a combination of plasmon resonance in such colloids and resonance due to quantum
confinement of electrons in a thin shell (of gold). It has been argued that the initial
shift in the second absorption peak towards the red cannot be explained by a plasmon
resonance effect.

In Figure 1.9 we show a plasmon resonance calculation of the total cross section
of a core-shell particle. The core has a dielectric constant of ~ 5. which is assumed
to model gold-sulfide (Au,S) within the wavelength range of interest. and the shell is
a thin layer of gold. The experimentally determined bulk dielectric function of gold
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Figure 4.8: Absorbance of gold sulfide colloids coated with a shell of gold.
The peak at ~ 520nm corresponds to gold particles. The peak at longer
wavelengths shifts initially towards the red (1 — 1), but eventually shifts
towards shorter wavelengths (5 — 10).
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Figure 4.9: Calculated Plasmon Resonance in core-shell model. The shell
is of gold. The core is a dielectric with ¢ = 5. The diameter of the core
is increased from 1nm to 4nm, but the shell thickness is held constant at
0.5nm. The peak shifts towards the red.
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was used for this calculation [24]. The diameter of the core was increased. keeping the
shell thickness constant. This is assumed to model the experimental situation where
initially the formation of unstable Au,S causes the particle diameter to increase.
However. it is argued that a ‘transition’ shell of gold is formed as a result of reduction
of the Au-S bond on the surface by S?~ ions {15] [44]. In this ‘core-growth regime. the
calculated plasmon resonance peak shifts towards the red. The peak height increases
and this is primarily due to the larger cross sections resulting from increasing particle
sizes.

Figure .10 and Figure 4.11 are calculations for two different situations that could
follow the initial "core growth™ regime. In Figure 4.10 we calculate the cross section
when the total diameter of the core-shell composite is held constant. but the diameter
of the core itself is made to decrease. This is the *diffusion mode” which corresponds
to the possible physical situation in which the process of Au,S formation ceases. so
the particles cannot grow any bigger. but the process of reduction of Au,S to Au

continues by a diffusive process through the shell. thereby increasing the net shell

x10"*  DIFFUSION THROUGH SHELL (R2 = 20nm)
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Figure 4.10: Calculated Plasmon Resonance in core-shell model. The shell
is gold. The core is a dielectric with € = 5. The total diameter of the core-
shell is held constant at 20nm, but the shell increases in thickness from
2nm to 15nm. The peak shifts towards the blue. The absorption becomes
more gold-like.
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Figure 4.11: Calculated Plasmon Resonance in core-shell model. The shell
is of gold. The core is a dielectric with ¢ = 5. The diameter of the core is
held constant at 10nm, but the shell increases in thickness from 1.5nm to
6nm. The peak shifts towards the blue.

thickness. An alternative scenario is described by the calculation in Figure 4.11. In
this ‘constant core” mode, the core of Au,S is assumed to have stopped growing. but
the thickness of the gold shell continues to increase as a result of the formation and
deposition of gold on the already existing particles. In either case. the calculated
plasmon resonance peak shifts towards the blue. It is of interest to note that the
subtle interactions between the core. the shell and the exterior medium result in very
non-intuitive shifts. not only in the position of the peak itself. but also on the peak
heights and widths. Without further experimental evidence it is not possible at this
stage to distinguish between the two possible cases. however. if one considers the
slow growth of the Au peak during this blue shift of the Au,S. it is unlikely that the
shell is growing sufficiently in the ‘constant-core’ model to induce such large shifts.
The fact that one can possibly explain the characteristic blue-shifts from such exact
calculations of plasmon resonances in the shell-model is worth further attention.

In the above calculations, we did not make any provision for including a statistical
distribution of particle sizes. Such distributions will lead to an overall broadening of

the peaks. A further source of broadening can occur if the core itself is allowed to be
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absorbing. With the availability of accurate dielectric function for Au,S as well. such

a model can be tested theoretically against experimental observations.
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Chapter 5

Scattering From Non-Spherical Objects

5.1 Introduction

At present. solving Maxwell equations exactly for the problem of electromagnetic
waves scattering from objects with arbitrary shapes can be tackled by finite element
numerical methods only. The coupled partial differential equations are solved by
finite-element methods for the vector fields E and H. Even with such powerful nu-
merical methods there are some serious difficulties. In principle one could enclose
the scattering object in question in a sufficiently large box with a linear or non-linear
grid defined within it. The computed solution must satisfy the boundary conditions
on the surface of the scattering object as well as the bounding box itself. Due to
limitations of current computing hardware. one is restricted to a box that may not
be made sufficiently large. This leads to an important problem in trying to obtain
the boundary conditions on the bounding box itself. If the box is sufficiently large.
so that the scattered solution can be assumed to be negligible at the box boundary.
one can assume that the total field at the bounding-box boundary is equal to incident
(plane wave) field. Since this condition is frequently difficult to satisfy. the computed
solution will be in error.

In this chapter. we discuss an “exact’ method of solution for scattering from an ob-
ject whose boundaries do not confirm to the coordinate surfaces in a given coordinate
system (the spherical polar coordinate system in this case). We have seen in the pre-
vious chapter that the spherical symmetry of the shell-model allows one to decouple
the boundary condition equations. so that one has to solve a small matrix ( 4x4 for
Mie scattering and 8x8 for a single-shell problem) to obtain the unknown expansion
coefficients of the scattered field. With boundaries of arbitrary shapes one has to
solve a larger matrix. since the boundary-condition equations cannot be easily decou-
pled. We illustrate this method of solution by considering an oblong "capsule’ shaped
scatterer. Even for an object that has this relatively simple shape of a "capsule’. one

previously had to rely on finite-element numerical methods for the solution.
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5.2 The Model

The scattering object is a ‘capsule’. composed of two hemispheres of radius R. sepa-
rated by a cylinder of radius R and length L. The origin is chosen to coincide with the
center of the lower hemisphere as indicated in Figure 5.1. When L— 0 the capsule
degenerates to a sphere of radius R whose scattering solution can be obtained ex-
actly. The axis of symmetry coincides with the z-axis. As we shall see. our choice of
azimuthal symmetry makes the different m values decouple. The surface is therefore
determined by three piece-wise continuous functions: The upper hemisphere section
AB (6 € [0.04]). the cylindrical section BC (8 € [#4.7/2]) and the lower hemisphere
CD (6 € [x/2.7]). where tan8, = R/L :

sio 5 (5) —2(%) (§) oo+ (%) -1 =0. 5.1)

Sge : R—rsingd =0. (3.2)

Sep : R—-r=0. (9.3)

The normal direction at a given point (r.8) on the surface is obtained by taking the
gradient of S: n ~ VS. One of the tangential directions is chosen to be in the e,
direction. so that the other tangent is given by n x e,. Thus the tangents and normals

(not normalized to unit length) on the three segments can be shown to be as follows:

n' = (r—Lcosf)e, + Lsinfey

Sap : t] = Lsinfe, —(r—Lcosf)ey (5.4)
t: = e,
n® = sinfe, +cosfeg

Spc @ t2 = cosfe, —sinfeg (5.3)
t2 = e,
n® = e,

Sep ¢t} = e (3.6)
t3 = ey

The surface is approximated by choosing a set of points on the capsule. labeled
as 1.2.3....N. In principle, the more points we specify. the better the approximation

to the true surface. By forcing the boundary conditions to be satisfied at the chosen
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Figure 5.1: (a) Geometry of ‘capsule’ shaped scattering object. Two hemi-
spheres of radius R are attached to the end of a cylinder of length L.
Letting L— 0, the capsule degenerates to a sphere. (b) Approximating
the azimuthally symmetrical surface by means of the discrete set of angles
;. r as a function of 0 is specified by a piece-wise continuous function. n
indicates the normal and t the tangent orthogonal to e,.

points. often in a least-square sense. we can solve for the set of unknown expansion

coefficients of the solution in the different regions.

5.2.1 Convergence Consideration

We have seen in Chapter 3 that the number of terms required to obtain convergence
(to better than 1%) about the origin. for an arbitrary plane wave expansion in the
basis functions is given by n ~ 1.1|kr|, where r is the distance from the origin and & is
the magnitude of the complex wave-vector in that medium. This provides us a direct
way to estimate the number of terms to include in the expansion for the scattered
field. given the desired accuracy of the solution and the size of the scattering object.
Clearly. the larger the scatterer. the larger the number of terms one needs to include
to obtain the scattered solution. Such considerations are equally valid even in the
case of the symmetrical scattering objects we encountered in the shell-model. The
rationale follows from the following argument: Any scattered field can be expressed

as a sum of plane waves. so if the expansion for the plane waves themselves requires a
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certain number of terms within a region. so will the expansion of the scattered solution
within the same region. For objects that deviate from the spherical geometry. more

expansion terms for the scattered fields are required as well.

5.3 Expansion in positive m only

When representing the incident plane wave field. we used a double summation: n €
[1.2.3,...] and m € [0,£1.£2..... +n] over the M and N functions. The “forced
solutions of the scattered fields will have terms corresponding to each source term.
By employing certain symmetric relations, we can express the incident field (and so
the scattered fields as well) in a series of functions with m > 0 only. This will not only
reduce the computation by at least 350%. but it will also avoid certain troublesome
numerical inaccuracies with computing the m < 0 functions. The computation of
the Associated Legendre functions for m < 0 for large |m| and n involves obtaining
ratios of factorials like (n — m)!/(n + m)!. and these can lead to severe numerical
inaccuracies.

We define a set of functions Memn. Momn« Nemn and Nyn, where m > 0 only and

the o and e subscripts refer to ‘odd’ and "even’:

Memn = —mzp(kr )-P—Mlsinmo’ eg—:n(kr)Mcosmo e, (3.7)
sin 8 df
™ {P™ 0
Momn = mzg(kr )E—Mcosmé eg—-:n(kr)fp—"(co—s)-sinmo e, (5.3)
sin @ dé
_ zo(kT) 1 d dP(cos @)
Demn = n(n+1) o P (cos ) cos mo e,+krdr(r~n(kr)————(lg cos mo ey
1 d, P™(cos @) . -
—mEE(mn(k )) e sin mo e, (5.9)
_ ~n(l») m 1 d dP™(cos@) .
Nomn = n(n+1)——=PM(cosf)sinmo e, + o —(rz,(kr) ) sinmo ey
m 0
+mii(r~n(kr))PL(,c—"s—)cosmo e, (5.10)
krdr sin 4

where z,(kr) are either the spherical Bessel or the spherical Hankel functions. It can

be verified by straightforward algebra that the following relations hold:

Mpn — M2 = 2iMomn (5.11)



M, + ML, = 2man, (5.12)
Npa—=NL = 2ingnn (5.13)
Nmn+N:nn = 2nemn- (314)

Now we have already seen that:

_ m(n=m)l S
M—mn = (—1) man ()1))
N - (_1)mMN' (5.16)

—-_mn - (n+m)! mn- J.

Since the M~ and N~ functions can be expressed as scalar multiples of the M and
N functions. therefore they satisfy the diffraction equation as well. Also. since the
m and n functions defined above are linear combinations of the M and N and their
complex conjugates. they too are solutions of the diffraction equation.

Consider an expansion for a p-polarized incident wave as shown in Figure 5.2.
Both E and k are confined in the XZ plane. so that 3 = 0 (J is the azimuthal angle
of k). Since the incident electric field. E = (£,.0. E.). do not have any component in

\\Az

x
<

R

P-POLARIZATION S-POLARIZATION

Figure 5.2: Defining the relative orientation of E and k for s and p polar-
ization geometries. The definition assumes the presence of an interface at
the xy-plane.
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the y-direction. we can write (since the n = 0 terms. M and N are identically zero):

Eeik-r

= Y Y UE

n=l m=-n

= 22> {(Ezap, +E.ap,

n=1 m=0

) Momn +

+ (Ez 0%y + E=031) Mo + (B b7,

= L% {E (.

n=1m=0

+E. (afnn

Gmn + Ez05,) Mun + (E- b7 4+ E-57,) N}

(EI bﬁln

(3.17)

+ E.b,,) Nna

+E.b,,) Nopaf

Mun + % e M) + Ex (b Nonn + 6% 1 N )

Munn + @5y M) + Ex (850 Nonn + 6% 10 Noa) }

where in the last two steps we remember to count the m = 0 term only once. Now.

since 3 = 0 in the chosen geometry. we have

m+l(n +m), r

a-,..=(-1) (r = m)i o and a ..
Similarly.
1
b{mnz(—nmz’;—“L—Z;—; = and b

So we have:

an +aZ M—mn =

~mn

0z (M + (=1)™ (=1

L mer (n+m)!
=(-1) —(n—m)'a'""
nn+m)t
=(-1) (n =)l e

)" M, )

= tp, (Mn ")
= a n Momn (')18)
an +a—mnM-mn = :n (an+(_l)m+l( )mM:nn)
= apn (Mma =)
= 2ia;,, Momy (5.19)
br Nmn+bim"N—m" = brrnn(Nmn'*'(—l)m(_'l)mN:nn)
= bpn (N + N7p)
= 2bp, Demn (5.20)
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biun Nomn + 0% Nomn = i (Nom + (=1)™(=1)"Ni,)
= b, (Nmn +N7,)

= 2% Nemn. (5.21)

Substituting these relations back into the expression for the incident field. we finally
obtain an expansion in m > 0 only. Here £, = Egsin8; and E. = Egcosd;. and the

wave vector is k = (k.a =7 —0;.3 = 0).

E eik-r — f: . {2l(EJ~' afnn + E: afnn) Momn
- 2 (Ep b, + E- b ) Domn
(p-polarization) n=1m=0 +2( mn + E:00,) 0, }

Similarly. for s-polarization, with E = Eqe, and k = (k.a = 7 — 6,. 3 = 0). we
obtain:
E eik'r = EO Z Z {(a’,’nn an + aimnM—mn) + (bilnn Nmn + b!r/nn N—mn) }
n=1m=0

Using the properties of sign changes in the a¥, and the b, coefficients. we obtain

X n
E ekt = E, Z Z {'2 a¥, Meyn, + 2067 namn}
. . n=1 m=0
(s-polarization)

—_
(1)
A
—

—_—

Now that the expansion for the s and p-polarized incident fields are known. one
could obtain the expansion for any elliptically polarized wave from linear combinations
of the s and p polarized wave expansions. When 3 # 0. we can always solve for the
fields in a coordinate system for which 3 = 0. and once the field coefficients are
determined. transform the azimuthal angle © — o0 — 3 to obtain the solution in the

coordinate system of interest. This amounts to simply multiplying the solutions by
+im3
€ .



5.4 Boundary Condition Equations

For the problem of scattering from a capsule, we have two regions: inside the capsule
surface where the dielectric function is €;. and outside the surface where the dielectric
function is €. As in the case of scattering from spherical shells. we assume €, to be
a real function of the incident wave frequency. This validates the expansion of the
incident electric field in the spherical bessel function solutions. Since the origin is
enclosed within the surface. the solution in region 1 will have the spherical bessel

function solutions only.

Consider an s-polarized incident wave of unit strength ( |E;| = 1) with the polar-
ization oriented along the y-axis and k confined to the xz-plane (3 = 0):
E = Z Y {amn m?% 4 by, nﬁfnn} (5.24)
n=1 m=0

N
| RV
U
-~

© n , .
H;, = —i\/%z Z {bmn mgfnn"'am" ngg’"‘} :

n=1 m=0
where am, = 2a¥,, and by, = 2:bY,, and the superscript 2 for the m and n functions
refer to medium 2. We assume the scattered electromagnetic fields in the two regions

to have the following forms (expanding in the m > 0 terms only) :

~x n
— 1 1y 1; 1 -
El - Z z {amn Menn + bmn nomn} (726)
n=1 m=0
€ x n
. i i ¥ L o
Hy = —ij/— 3 3 {88, m, + a0l } (5.27)
Hy n=1m=0
~ n
— 2h 2h 2h 2h - 9o
E, = Z Z {amn m,,, + bmn. nomn} (5.238)
n=1m=0
) % n
—_ q 2h 2h 2h __2h -
H2 = T4H Z Z {bmn Mynn + An nemn} (’).29)
H2 n=1m=0

For each point on the surface. we can write down six equations corresponding to
the boundary conditions. As discussed before, not all of them are linearly indepen-
dent. In fact when L = 0. corresponding to a sphere. the equations of continuity of

the tangential fields of E and H alone will yield a linearly independent set:

E,-t; = E,-t, +E; -t (5.30)



E1 't2 = Ez't2+Ei't2 (331)
H1 'tl = Hg'tl-*'Hi'tl (332)
H1 ° tz = H2 . tz + H,‘ . tz. (333)

In general. we have the remaining two equations arising from the continuity of the
normal components of D = ¢E and B = yH. Here n (without the subscripts) refer

to the normal vector and not one of the field-functions :

Ei-n = ¢E; n+E;-n (3.34)

,ulHl-n = ﬂgHz'n'{-‘lt‘gH,"n. (-)33)

Each of the terms above of the form E - t is expressible as an infinite series when

we substitute the expression for the appropriate field expansion. Thus for example:

b= Z Z { emn ) )+ bl] omn. 1)} (5.36)

n=1m=0
In order to obtain these coefficients we approximate the field expansions by truncating
the series to a finite number of terms. The number of terms to include is decided
finally by the overall error in the total solution. The o-dependence in each of the
terms of the boundary condition equations are of the form sin mo or cos mo. On
multiplying both sides of a boundary condition equation, say Equation 5.30. by ™'
and integrating with respect to ¢ between the limits o € [0.27]. only the m = m'’
terms survive. [t can be easily verified that in fact both sides of these equations have
the same &-dependence. For example. since t| ~ ti-e, + ti9e9. and m.p, - €, = 0.
Memn - €9 ~ SIN MO , Nomn - € ~ sin Mo and Nyp, - € ~ sin mo. both the left and
right hand side expressions of Equation 5.30 will contain only sin mo factors. Thus
we have all the boundary condition equations above decouple for the same m. This is
a direct consequence of the assumptions on azimuthal symmetry on the shape of the
scattering object. For a chosen m. only n > m terms will survive due to the factors
containing the Associated Legendre functions. So the boundary condition equations
(after ‘m’-decoupling) will assume the form. for Equation 5.30 say:

m4+N—1 ) _ , ,
Z { emn'tl)—arzrfln( f:lnn t )+b“n (n})‘r]nn' )_bnfn( uflnn tl)}

n=m
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m+N—1 ] ]
= Z {a’"" (mf;]nn 't1)+bmn(n§;’nn.tl)} (3.

n=m

(W]
—
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where the right hand side of the equation contains the “source’-terms only. Similarly.

we can write Equation 5.31 as:

m+N-—-1

Z { emn ) 2) - a127:1n (mSZm . ) le ( omn - tg) - brz:n (nifnn ) t‘))}
n=m Nt
- Z‘: {amn( t2) + bmn( omn t2)} (538)

Equation 5.32 becomes, cancelling the common factor —: from the expressions for H

in the different regions :

mi-! 1j €15 2h €2 ap
Z amn( —Nmn tl) —amn( ;:nemn tl)

n=m 1

+b}ﬁ]n( -6_lm;‘rlnn tl) - ‘;ﬁln( miir;m tl)}
V 7 L2
m4+N-1 { [
= Z {amn ( emn " + bmn momn : } e (3"39)
n=m ;

and Equation 3.33 becomes:

m+N-1 € )
> {“}#n(\/ —nl,, -t2) —a¥, (\/ nff,m-t.z)
+blj ” momn ta) — bzh ” momn 2 }
m+V— &
= {am" (w emn t2) + bmn ” momn tz)} . (—)—10)

Finally the boundary condition equation from the continuity of the normal component
of D assumes the form:
m+N -1
1 a2t 2h
3 {ademi, n) - i (@mi, on)

+brlr{ (61 nomn : n) - b?rfln (62 ngfnn ’ n)}
m+N-1
= Y {ama(em¥, n)+bu (202, n)}. (5.41)

n=m



and the continuity of the normal component of B gives us the equation:

i 1j €1 g 2h €2
Z an{n (#1 negnn . n) —Qmn (#2 nzr,:m : n)
+65 (g1, / mom -n) — b2 (2, / m }
m+N—l
= Z {a’"" (#QV emn “n) + bpn ( #ZH mom" } (3-42)

In these truncated boundary-condition equations. the right hand sides are com-
pletely known. and they constitute the source terms. The left hand sides are linear ex-
pressions in the unknowns aly , b4 . a?! and b?* (withn € m.m+1....m+ N —1).
Thus each of the equations above can be considered a linear equation in 4N unknowns.
where N is the specified maximum number of terms to use for a specified m. The
coefficients in these equations are functions of r and 4 (the ¢ part cancels out in the
process of decoupling the equations for the same m). So for each specified point on
the boundary. we obtain six equations in 4N unknowns. By specifying more points on
the boundary. we can obtain more equations. The structure of the resulting system of
equations can be written in matrix notation which has the form shown in Figure 5.3.

The ‘coefficient matrix’ contains blocks of 6 x 4 elements and all the blocks cor-
responding to a given 8; are obtained from the boundary condition equations for the
point §;. Specifying more points on the boundary or including more terms in the
truncated expansion for the scattered fields would tend to give us increasingly better
approximations to the exact solution but at the expense of increasing the size of the

boundary-condition matrix.

5.5 Solving the Boundary Condition Equations

The procedure outlined in the previous section allows us to reduce the problem of
electromagnetic waves scattering from an azimuthally symmetrical object. to solving
an overdetermined set of boundary-condition equations, Ax = b. By the nature of
the basis functions M and N (or the equivalent m and n functions). the radiation
conditions. i.e.. the boundary conditions at infinity. are automatically satisfied. This
is of non-trivial significance since we can essentially eliminate the source of error from
having to consider "approximate’ boundary conditions at the enclosing box boundary.

which is often approximated to be at infinity.
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Figure 5.3: Structure of the matrix derived from the boundary condition
equations for a specified m. We obtain 6p equations from specifying p
points on the bondary to solve for the 4N unknown expansion coefficients.
All the blocks corresponding to say 6, represent the six boundary con-
dition equations for point 6;. The unknown expansion coefficients of the
scattered fields are obtained from the over determined system of equations
by a linear least-square method (we require 6p>6N).




The system is deliberately allowed to be an over determined system (number of
rows. M > number of columns, N) since we are considering scattering objects with
arbitrary shapes. We can solve the system in a least-square sense. [t can be shown [31]
that this essentially involves obtaining the solution of the corresponding system of
the normal equations AAT = ATb. However, the matrix AAT will typically have
a larger condition number (indicating greater numerical instability) as compared to
matrix A. Instead. the preferred method of solving the linear least-square problem is
to obtain the singular value decomposition of the boundary condition matrix. A. and
eliminate the troublesome singular values before attempting to solve the system.

In order to verify that this method of solution is valid. we compare the com-
putations of the least-square solution with the exact solution in the special case of
scattering from a sphere for which the exact solution can be obtained easily by the
method described in the shell-problem. In Figure 5.4 we show the result of such a
comparison. The calculations are done on a glass sphere (e = 2.5) of radius R = 1 A.
The optical field is focussed by ‘lens-action’ and the maximum field strength is ap-
proximately T times the incident field strength. We have calculated the field in the

following two cases:

o (a) The incident wave propagates along the z-axis (§; = 0). Only m = | terms

are allowed in this case.

e (b) The angle of incidence is 45 degrees with respect to the z-axis. The incident
wave has been expanded in a series with all allowed m. The calculation shown

is done with m < 3 only.

The fields are calculated using N = 12. where m + N — | is the maximum value of n
for a given m. For the least-square solution we specified 30 points on the surface of
the sphere. For both cases (a) and (b). the solutions computed using the method of
linear least-square are almost identical to the exact solutions as testified by the field
calculations. validating the accuracy of this method. Although the calculation in case
(b) involves a different set of coefficients and a larger number of terms. physically we
expect both the solutions to be identical. with redefinition of the z-axis to coincide
with the direction of incidence. The computations show us that indeed this is almost
the case. the fields in case (b) are just rotated (by 45 degrees) version of the fields
shown in case (a). The minor difference in the field patterns in the rotated case as

compared to the non-rotated case are probably due to round-off errors involved in



EXACT LEAST-SQUARE

Figure 5.4: Comparing the method of linear least-square solution of the
boundary-condition equations with the ‘exact’ solution for scattering from
a glass sphere (e = 2.5) of radius R = 1A. The optical field is focussed to
> 7 times the incident field by ‘lens-action’. The incident field is polarized
normal to the plane of the figure. (a) 6; = 0° (top row) , (b) 6, = 15°
(bottom row). Physically, the 45 degree incidence case should have been
identical to the 0 degree incidence except for an overall rotation by 45
degrees. The differences are due to round-off errors in evaluation of the
basis functions.
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the calculations. Since the field patterns for the "exact’ computation and the least-
square computations are almost identical for both the incidence angles. the errors
are probably not contributed from the least-square fitting procedure. but rather by
inaccuracies (due to round-off errors) introduced by the function evaluation of the
spherical Bessel/Hankel functions (of complex arguments) or the Associated Legendre
functions.

In Figure 5.5 we show a sequence of calculations by adding the contribution from
the next higher order term in m. The m = 0 figure is the field calculation with
only the m = 0 term included. The m = 1 label indicates that both m = 0 and
m = 1 terms are included. The field pattern becomes increasingly accurate with
higher orders of m included in the calculations.

In Figure 5.6 we show the contribution from each order of m separately. It is
evident that the major contribution of the field magnitude will result from m < 4
within the region shown in these figures.

Having demonstrated the validity of the numerical techniques involved in these
calculations. we now show in Figure 5.7 a sequence of calculated fields for scatterers
that are made increasingly more oblong. The incident light in this case is made to
approach along the z-axis. The object is elongated from a sphere by 60% (L ranges
from 0 to 0.3\ and R = 0.5\). The continuity of the fields across the boundaries as
L is increased affords visual testimony to the accuracy of the computed fields.

In Figure 5.8 we show the calculation done on a capsule shaped scatterer with
the incident wave approaching from an arbitrary direction. As discussed before. the
scattering object has azimuthal symmetry about the z-axis. However the arbitrary
incidence direction of the incident plane wave breaks the symmetry. Calculations
are shown for a sequence of incidence angles ranging from 0° to 180°. Physically we
expect the field patterns to vary continously as 6;. the incidence angle. changes. For
example. when 6; is equal to 90°, the field pattern ought to be symmetrical about
the center of the capsule. even though the origin for defining the basis functions is
located non-symmetrically with respect to the center of the scattering object. The

same situation applies when § = 180°.

5.6 The Sphere-Plane Model

Considerable interest exists in the problem of solving for near-field scattering of elec-

tromagnetic waves incident on a geometric structure often called the sphere-plane



Figure 5.5: Field calculations by including higher orders of m, from m =0
up to m = 5. Glass sphere (e = 2.3) of radius R = 1A and 6; = 43°. Although
m = | appears to be the ‘dominant’ term in this sequence, serving to
establish the overall field distribution, the higher orders are necessary to
obtain more accurate calculation of the field intensities.



[07)
8]

m=3 m=>5

Figure 5.6: Field calculations for different orders of m, from m =0 up to
m = 5. Glass sphere (¢ = 2.5) of radius R = 1\ and §; = 45°. The m =1
contribution appears to be the most ‘dominant’ term in this sequence.
The contributions from m =4 and m = 5 terms are going to be small.



Figure 5.7: Electromagnetic scattering from a ‘capsule’ scatterer. R = 0.5\
and L is increased from zero (sphere) to 0.3\. The dielectric constant of
the scatterer is taken as 2.5 in these calculations. Light is incident from
the bottom of the figure with the polarization directed out of the paper.



Figure 5.8: Electromagnetic scattering from a ‘capsule’ scatterer. The in-
cident light approaches from different directions. From top-left to bottom-
right the images are shown with §; changing by 22.5° between the images.
Although the 0° and the 180° situations are computationally different (due
to lack of symmetry about the origin), the fields evaluate identically, which
is expected physically. The ‘focused’ spot achieves higher intensity for 22.5°
incidence angle.
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model. This geometry has been used to do theoretical study of field-enhancements
that could be responsible for the phenomena such as SERS (Surface Enhance Raman
Spectroscopy) [3] [33] [39]- A sphere of radius R. made of a material whose dielectric
function is €, is separated by distance d from a plane (Figure 5.9). The half-space
containing the sphere is composed of a material with dielectric function €;. The half-
space not containing the sphere is composed of a dielectric with dielectric function €3.
The incident wave propagates in region 2 and is reflected and scattered at the planar
interface as well as the sphere boundary. Region 2 is assumed to have a non-lossy
dielectric function. so that the plane wave expansions are strictly valid.

The sphere plane problem has been attempted for solution by many researchers
for nearly two decades now. The usual approach has been to obtain a solution in the
quasistatic approximation, i.e.. to solve Laplace’s equation [3] [33] [34]. However. as
discussed before, the introduction of complex dielectric functions in the quasi-static
approximation is artificial. Under static field configurations there cannot be any
losses or phase delays which result from a complex dielectric function. In fact such
equations do not satisfy Maxwell's equations since the principle of conservation of

energy is violated. Furthermore. such an approximation is valid only when R < \.

Figure 5.9: The Sphere-Plane model. The dielectric function of the sphere
is ¢, and that of the plane is 3. The medium surrounding the sphere has
non-dissipative dielectric function €,. k is the propagation vector of the
incident radiation. Such a model is often used to do theoretical studies of
plasmon resonances on roughened surfaces.
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even for real dielectric functions. An “exact’ approach for solving the sphere-plane
model that takes exact account of retardation effects is based on solving the vector
Helmholtz equation with the aid of a tensor Green’s function [39]. The incident
electromagnetic wave scatters off the spherical surface as well as the planar surface.
These scattered waves in turn scatter back and forth between the two surfaces. The
final field is obtained by summing over the total contribution from each pass. This
method is also computationally intensive.

In our approach to solving the sphere-plane model we use our basis functions
to represent the field in the three regions. Analogous to the case of the elongated-
scatterer problem. the electromagnetic scattering problem is reduced to solving a
system of linear equations obtained from the boundary conditions on both the surfaces.
The boundary condition equations are easily decoupled on the sphere surface (since we
are working in the spherical polar coordinate system) and the only task that remains
is that of satisfying the boundary conditions on the plane boundary. However. unlike
the problem of the elongated scatterer whose boundary can be enclosed in a finite
volume. there is a problem in the sphere-plane problem related to the fact that the
plane extends to infinity. The plane wave approximation implies that the fields are
non-vanishing at infinity. So. in order to satisfy the boundary conditions on the plane.
far away from the origin. we require an infinite number of terms in the expansion of
the fields.

We overcome the problem by using our knowledge of Fresnel’s formulae for reflec-
tion/refraction of a plane wave at a planar boundary. We write the electromagnetic
field solutions for regions 2 and 3 as the sum of two parts each. In region 2 the
total field is that due to the incident field. E;. the reflected field (off the substrate).
E, (assuming the sphere is absent), and the scattered field in region 2 due to the
presence of the sphere. Similarly, in region 3 the total field solution can be thought
of as the sum of the transmitted field. E, (again assuming the sphere is absent) and
the scattered field in region 3 (due to the sphere in region 2) required to satisfy the
boundary conditions on the substrate.

Fresnel’s formulae are obtained by satisfving the boundary conditions on a plane
boundary for an incident plane wave [22] [12]. The problem is reformulated as follows:
If the sphere was absent then the solution for the field in the two regions separated
by the plane is given by Fresnel’s formulae. The incident wave gives rise to a reflected
wave as well as a transmitted wave. In region 2 the incident and the reflected fields

would add together to determine the total field in region 2. In region 3 only the
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transmitted wave contributes to the field. Since all three fields are plane wave fields.
we can express them in a series of the basis functions. However. since we already know
the solution. such a process is not necessary. In fact we do not gain anything by doing
this. Now we imagine bringing the sphere from infinity along the z-axis. It is going
to be subjected to two plane-wave fields: the incident wave field and the reflected
wave field. We know how to solve the sphere-only problem for arbitrary incidence
angles. Therefore the two fields in region 2 can be added together to provide a single
‘excitation’ field to which the sphere is subjected. The sphere will scatter and the
boundary conditions on the sphere surface will determine the relation between the
coefficients of the scattered fields in regions 1 and 2. The scattered fields in region
2 will give rise to scattered fields in region 3 as well. Since the incident. reflected
and refracted fields of the plane wave excitation are already made to satisfyv the
boundary conditions on the plane (Fresnel’s formulae). so now it is only the scattered
fields in regions 2 and 3 that have to satisfy the boundary conditions on the plane.
Since the scattered fields decay as ~ 1/r. we need to consider points on the plane-
boundary only far enough for the scattered fields to decrease to a small fraction of
the incident and reflected fields added together. The remaining procedure is going
to be identical to that followed for the elongated-scatterer problem. We set up the
boundary conditions matrix and solve for the (six) unknown coefficients in the three
regions. The scattered solutions in regions 2 and 3 will again be represented by
the spherical Hankel function solutions alone. since the transmitted field due to the
incident plane wave will be represented by the spherical Bessel function solutions and

they will determine the asymptotic behavior of the total solution.

5.6.1 Fresnel’s Formulae

Consider a plane wave (polarization not specified at the moment) incident on a planar
interface as shown in Figure 3.10. The incidence angle is §; and the incident wavevec-
tor is represented as k;. 8, and 6, correspond to the reflected and refracted angles
and k, and k, represent the reflected and transmitted wavevectors. If the wavevector
is complex in a passive medium then of course the wave will be attenuated. Thus
the incident. reflected and refracted (plane wave) fields in the two media takes the

following forms:

E; = E(') gilkir—wt) H; = LV x E; (3.43)

twp
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Figure 5.10: Plane wave incident at a planar interface. Reflection and
refraction occurs. The plane is located at z = d. The phase must satisfy
spatial invariance on the plane.

E, = E6 giller-r—wt+5r) H, = _J_V x E, (5.44)
w2
E;, = E(t) eilker—wt+sc) Ht = ::lu:v x E; (5.43)

The fields have to satisfy definite boundary conditions at the interface. Spatial in-
variance on the plane (by symmetry. the same relation must hold for every point on
the plane) requires that at all times the phase factors k;-r. k,-r+ 6, and k;-r + 6, are
equal. Otherwise the field relations would depend on the position on the plane. which
is physically disallowed. Since all points are equally valid on the plane. we consider
the point of intersection of the z-axis with the planar boundary. We can immediately

write (for this chosen point):

Ot

ki-r = k;-(—de.)=kdcosb; (3.46)
ki-r = k,-(—-de.)=—k d cosb; (5.47)
ki-r = ki-(—de.)=kdcosb,. (3.43)
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Using the equality of the phases. we immediately arrive at the expression for ¢, :

6, =2k; d cosé; (5.49)



Using Snell’s Law:
k

sinf, = E—sin();. Or (5.50)
t

cosfy = /1 —sin?4,. (5.51)

If k;/k; is a complex number then we obtain a complex number for cos 8; from the
equation above. This in turn will yield a complex number for the phase in region 3.

So. we can write the expression for §, as:
6y = kid cos8; — k,d cos 8. (5.52)

Having determined the phases. we can compute the field in the two regions (2 and
3) that satisfy the boundary conditions. The relation between the amplitudes E}. Ej
and Ef is given by the Fresnel's relations [22]. For s-polarization (E directed out of
the paper in Figure 5.10) with n = | /ey :

E} 2n, cos b; = =3
ET - 2 2 2 in2 (J'O- )
0 ny cos §; + £y/n3 — nj sin” 0;
E .« 9
E; ny cos§; ~ Z—z\/;?, — n3 sin? 6, .
—_ = (5.54)

i - :
E; ng cos §; + £4/nf — n3 sin® 6;

The corresponding expressions for p-polarization (H directed out of the plane of the

figure) are :
E¢ 2n,n3 cos8; .
_E-'_i_ = = ().-’)-’))
0 Z—jn% cos§; + nz\/n§ —n3 sin* 4,
- 9
E; “:—zn% cos 0; — n, \/n§ —n3 sin* 4,
— = . (5.56)
: 82,2 . 2 in2
E§ £2n3 cosb; + nay/n3 — nj sin®f;

With the knowledge of the plane wave fields satisfying the boundary conditions on
the substrate. we can readily handle the case of satisfving the boundary conditions

for the scattered fields due to the sphere.

5.6.2 The Boundary Condition Matrix

In Figure 5.11 we show the schematic of the matrix derived from the boundary con-

dition equations. As a variation in the numerical techniques for solving this problem.
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we shall try to obtain the solution by solving a square matrix derived from the bound-
ary condition equations. This is suitable when the lengths involved (R and d) are
much smaller than the wavelength of the incident radiation. When these lengths be-
come comparable to the wavelength. higher precision floating point calculations are
necessary for preventing excessive round-off errors. We try to obtain the solution
in a truncated expansion with the maximum value of n = m + .V — 1. Thus the
matrix we are required to solve will have dimension 6.V x 6.V. Since we require that
6N = 4N + 6N,y ( a square matrix ). where Vg, is the number of specified points
on the substrate, N must be divisible by 3.

The first 4 V equations correspond to the boundary conditions on the sphere sur-
face. As in the case of a simple isolated spherical scatterer. these equations decouple
with respect to different n’s and so the first 4V rows consists of diagonal” blocks
of 4 x 6. The remaining elements in this upper section of the matrix are zero. In
other words. we are combining all the individual 4 x 4 equations for a sphere and
then attempting to solve them all at once. Within these blocks only the entries cor-
responding to the coefficients in regions 1 and 2 will be non-zero. We require 6.V,
equations for the substrate corresponding to the N, specified points. For the sub-
strate equations. the elements corresponding to the coefficients of region 1 will be
zero. Convergence of the solution can be checked by either increasing the number
of points on the substrate or changing the location of the points themselves. Either
way. the solution may not be perturbed by more than the error limits defined for the

problem at hand.

5.6.3 Field on the z-axis

On the z-axis. i.e. when # = 0 or #. evaluation of the total electric field is made simpler
because many of the terms in the expression for the total electric field vanishes. When
k lies entirely in the xz-plane. for s-polarization (E directed along the y-axis). E can

be written as a linear combination of mem, and n,m, functions. Now.
m
P (cosf) .

_ ., dPT(cosb)
o sinmo eg — z, (k1) 7

Memn = —mzp(kr) cos mo e,.(3.37)

Clearly. the first term is going to be zero on the z-axis. for any m # 1. For m > 0
the P"(r = +1) = 0. and for m = 0. the factor m ensures that the first term is
always zero on the z-axis. As we have seen before. on the z-axis. the second term

containing the derivative of the Associated Legendre function wll be zero for m # 1.
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Figure 5.11: Structure of the matrix derived for the sphere-plane model
from the boundary condition equations for a specified m. We obtain 6N
equations in 6N unknowns by specifying N/3 points on the substrate. The
equations for the sphere boundary (indicated by the dotted box) are exact.
The matrix above is shown for n = 6 and so the number of points specified
on the substrate, NV, = 2.




Similarly. by examining

_ znl(kr) ) , 1 _ . dP(cosb) .
Nomn = n(n+1) e ) 2 (cosB)smmoer+E_-g;(r-n(kr)7-51nmoeg
1 d P™(cos @
+ m——(rzn(kr))ﬁ—) cosmo e,;. (5.38)
kr dr sinf -

we notice that the first term is going to be zero for any m because of the product
P™(£1) sinmoé. The second and third terms are going to be non-zero on the z-axis
only for m = 1. Thus, for the s-polarization case the total electric field on the axis
will not have any radial component. This is physically reasonable since the incident
electric field does not have any radial component on the z-axis either. The total
electric field on the axis can therefore be obtained by solving the m = 1 matrix only.

In the case of p-polarization, the scattered electric fields are expressed in terms of

the m,,,, and n.,, functions. Now,

m 0 dP™ ]
My, = m:n(k'r)i(,ci—) cosmo eg — :n(lcr)P"(ﬁZ sin mo e,. (3.39Y)
sin do
and.
Nemn = n(n+ l)z"( ‘T)P,:"(cos 8)cosmo e, + i——(r:n(kr)w cos mo ey
kr kr dr db
L ) Z3 ) o ey, (5.60)
kr dr sin

As for the myn,, functions, only the m = | terms are non-zero on the z-axis. For the
Nemn functions. the first term is going to be non-zero for § = 0.7 for m = 0 only.
The ey and es components are going to be non-zero only for the m = 1 case. Thus.
in the case of p-polarization. the total radial electric field will be contributed by only
the m = 0 solution. and the total electric field in the direction orthogonal to e, will
be contributed by the m =1 solution only.

This turns out to be a great simplification in the computation of plasmon reso-
nances in a sphere-plane geometry. Since the electric field at various points in the
same medium are linearly related to each other. evaluation of the field on the axis to
determine plasmon resonances in a given geometrical configuration is a sound choice

from the point of view of numerical efficiency.

5.6.4 Plasmon Resonances in The Sphere-Plane Model

We calculate the plasmon resonances in the sphere-plane model for three systems: (a)
Silver sphere on silver substrate . (b) Gold sphere on gold substrate and (c) Copper



93

sphere on copper substrate. We use the experimentally determined bulk dielectric

functions for gold. silver and copper [24]. The incident light is s-polarized and the

incidence angle is 45°. Calculations are done with a sphere of radius R = 30nm. the

sphere-plane separation d = 3nm and the ‘observation’ location is at the intersection

point of the substrate and the z-axis. We have used n = 12. and tests with higher

number of basis functions do not alter the results, confirming that the solution had

converged. We choose points on the surface at fixed angular intervals. The boundary

conditions are made to satisfy exactly at these points. If convergence is reached then

the final solution should not depend on the particular choice of these chosen boundary

points.

We compare the results of our computations with the experimental data of Berndt

et.al. [10]. The experimental data shows the spectrum of light emission from a tip-

substrate geometry in the ‘field-emission’ regime (the tip-substrate voltage difference

is approximately > 100Volts. Presumably, the field-emitted electrons would excite the

plasmon resonances in the tip-substrate geometry. The theoretically obtained data

on the plasmon resonances is weighted by the detector sensitivity graph of Berndt

et.al. [10].
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Figure 5.12: Plasmon resonance in sphere-plane model. A Gold sphere
of radius 30nm located 5nm from a gold substrate. the sphere are gold.
(a) Theoretical calculation of plasmon resonance based on experimentally
obtained bulk dielectric function for gold; the broken line shows the as-
sumed detector response in the photoemission experiment in (c). (b)
Multiplying the calculated spectrum in (a) by the detector response. (c¢)
Experimentally obtained spectrum of photon emission from a tip-substrate

geometry in the ‘field-emission’ regime.
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Figure 5.13: Plasmon resonance in sphere-plane model. A Copper sphere
of radius 30nm located 5nm from a copper substrate. the sphere are
copper. (a) Theoretical calculation of plasmon resonance based on ex-
perimentally obtained bulk dielectric function for copper; the broken line
shows the assumed detector response in the photoemission experiment in
(c). (b) Multiplying the calculated spectrum in (a) by the detector re-
sponse. (c) Experimentally obtained spectrum of photon emission from a
tip-substrate geometry in the ‘field-emission’ regime.

The peaks in the computed plasmon resonance spectra correspond very closely
to the peaks in the photon emission spectra in the field-emission experiments. The
differences observed could be due to several reasons. including contributions from
other processes. inaccuracy in the assumed detector response function. artifacts of
the detection system (such as observing higher order diffraction peaks) and round-oft
errors in the computation itself. However. the strong correlation suggests that the
light emission process in the ‘field-emission” regime is due to a plasmon-resonance
effect.

The plasmon-resonance peak in the case of a silver sphere over a silver substrate
exhibit large field enhancements. In the case of this calculation with s-polarized
excitation. the enhancement is by a factor of ~ 10. This implies that the effective
intensity of the optical field is enhanced by a factor of ~ 100. This is in agreement
with the quasi-static calculations done by Arvind and Metiu [3]. Processes such as
surface enhanced Raman scattering of molecules that depend on the square of the field
intensity can therefore exhibit considerable enhancements (> 10%) due to nanometric

irregularities on substrate surfaces.
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Figure 5.14: Plasmon resonance in sphere-plane model. A silver sphere
of radius 30nm located 5nm from a silver substrate. The sphere is silver.
(a) Theoretical calculation of plasmon resonance based on experimentally
obtained bulk dielectric function for silver; the broken line shows the as-
sumed detector response in the photoemission experiment in (c). (b)
Multiplying the calculated spectrum in (a) by the detector response. (c)
Experimentally obtained spectrum of photon emission from a tip-substrate
geometry in the ‘field-emission’ regime. Notice the field enhancement at
resonance (by a factor of ~ 10).
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Figure 5.15: Comparison of field enhancements with a silver sphere on a
copper substrate and a copper sphere on a silver substrate. In this case,
it is clear that the enhancements are contributed more by the nature of
the sphere as compared to the substrate.
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The large field enhancements in the case of a silver sphere over a silver substrate
leads to the following question: Which of the two, the sphere or the plane. is more
important in this enhacement process. It has been customary to assume in the existing
literature to attribute such field enhancements to the substrate. It has been argued
that the role of the particle (the sphere or a tip) has been merely to break the
symmetry (translational invariance) of the plane, so that the surface plasmons can
couple to the radiation field by allowing conservation of momentum to take place. To
answer such a question we compare the results of our calculation in a sphere-plane
geometry in (a) a copper sphere on a silver substrate. and (b) a silver sphere on a
copper substrate. The results are shown in Figure 5.15. The incident radiation is
again s-polarized and the incidence angle is 43°. The sphere diameter is 30nm and
the sphere-plane separation is 5nm and the field observation point is at the point
of intersection of the z-axis and the substrate. It is clear from this calculation that
in this case at least. it is the partilcle (the plasmon resonance of the particle) that
is more important than the substrate. However it is a truly coupled phenomena.
For example. the enhancement in the case of a silver sphere on a copper substrate.
although large (~ 6). is still smaller than the the enhancements with a silver sphere

on a silver substrate.
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Chapter 6

Conclusion

In this thesis we have been developing the technique of vector basis function solution
of Maxwell's equations. In all the different ‘example’ cases in which this approach
has been applied. such as electromagnetic scattering from concentric shells or the
calculation of plasmon resonance in a sphere-plane geometry. the incident electro-
magnetic field has been assumed to be plane waves. The increasing sophistication
of experimental techniques has brought the domain of ultrashort (sub-picosecond)
optical excitations into many different contemporary experiments. The plane wave
approximation may not be valid in these situations for several reasons. The dielec-
tric relaxation times (which indirectly determine the dielectric functions) are often
much longer than the duration of the optical excitation itself. We are speaking of a
truly transient response in the sub-picosecond time scales. Furthermore. the extent
of the optical "wave-train’ may often be shorter than the dimension of the scattering
objects themselves. Also. we have not considered the problem of solving the Maxwell
equations in the presence of sources. namely charges and current densities. Although
such general problems are certainly not of mere academic interest. the mathematical
and computational tools available to solve these problems effectively are still far from

being satisfactory at the present.

6.1 Transient Excitation

The basic problem of transient response can in principle be handled by the method
of Fourier decomposition of the source terms. Typically an experimental situation
consists of a stream of ultrashort pulses. whose Fourier decomposition is determinable.
One could in principle solve the problem for each of these component excitations up
to some limiting order and obtain the final sum. In principle this can be readily
accomplished for a linear medium. In nonlinear media the summation process will

not be straightforward.
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It is the author’s belief that a more elegant approach of solving the transient
problem is possible by further research to find a suitable ‘Laplace-like’ transform
(Generalized Fourier Transform) to represent the pulsed excitation. Since the “basis
functions form a complete set, therefore the basis set satisfies the property of "con-
vergence in the mean’ (this is in fact a weaker property than completeness). This
however validates the process of interchanging the order of an infinite summation
and an integration to obtain the generalized Fourier/Laplace transforms [21]. So the
transform of an infinite sum is equal to the infinite sum of the transforms of each
term. The method should be similar to that of solving for transients in electrical
networks consisting of linear. lumped and time-invariant elements.

The importance of the transient problem lies in its potential to elucidate ex-
perimentally. the dynamical properties of nanometric systems (such as the scaling
of dielectric functions with particle sizes in the nanometer regime. for example) by
comparison with theoretical calculations. With our increasing dependence on the
scanning probe techniques to understand basic physical phenomena on surfaces. the

importance of the transient problem is clearly established.

6.2 Related Problems

In this thesis we have developed the method of basis function solution in the spherical
polar coordinate system. We have demonstrated the feasibility of using this basis set
for solving boundary value problems in which the boundaries may not conform to the
coordinate surfaces of the spherical polar coordinate system (the problem of scattering
from the ‘capsule’-shaped scatterer or the sphere-plane model for example).

In principle. we could solve the problem of plasmon resonances in what is called the
tip-substrate geometry using the same techniques. Such a geometrical configuration
is of importance in the modeling and understanding of electromagnetic interactions
at the tunneling junction of a scanning tunneling microscope. Such an understanding
is important in many of the other scanning probe microscopies as well. such as AF\I
or SNOM etc.. when light is coupled into the tip-substrate junction.

If we could allow the sphere in the sphere-plane model to assume the shape of
an elongated scatterer that is sufficiently long. in principle we could model the tip-
substrate problem. However. such an approach might require more sophisticated
numerical techniques to solve the boundary condition equations than those employed
in this thesis. The elements in the boundary condition matrix contains products of
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spherical Bessel or spherical Hankel functions of the first kind and the Associated
Legendre functions. The columns in these matrices contain these functions with the

index n increasing from left to right. Now these functions scale as a function of n and

: as follows:
Jnlz) ~ 1-:3-5-?7(211-{-1) (8.1)
n(z) ~ 1.3-5;;;52n—1) (6.2)
ha(z) = Ju(z) 4 1na(z). (6.3)

This kind of dependence makes the matrix highly ill-conditioned. The problem is
similar (if not worse) to that which is encountered when trying to invert matrices
of the type known as Vandermonde matrices [31]. These arise in connection with
problems of polynomial fitting. When we need to include more terms (to achieve a
better approximation). the matrix could become unduly lopsided from left to right.
This will invariably lead to numerical instabilities in the solution when the ratio
of the largest to the smallest elements exceeds the available machine precision. For
scattering geometries that deviate significantly from the spherical coordinate surfaces.
one would need to include more terms. This will lead to a more ill-conditioned matrix.

One way to overcome such a problem may be to use higher precision floating point
computations. Software libraries exist in Netlib and elsewhere to allow one to perform
quadruple precision floating point calculations or even arbitrary precision calculations.
Trade-off will have to be made with respect to the desired accuracy of the solution
and the increased computation loads resulting from the higher precision data types.
Probably it is only necessary to perform the process of solving the matrix in higher
precision, since it is the most critical step in determining the overall round-off errors.

Another alternative could be to use a coordinate system whose coordinate surfaces
are closer to the boundaries of the problem in question. The ‘recipe’ for obtaining the
basis set without any reference to a particular coordinate system has been outlined in
Chapter 2. That such a set will be complete has also been proved without reference to
a particular coordinate system. For example. in the tip-substrate geometry one could
use the prolate spheroidal coordinate system. The main handicap at present is the
lack of adequate analytical treatments of the eigenfunctions of the scalar Helmholtz

equation in the prolate spheroidal coordinate system. This has been the primary
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justification in this thesis to develop the subject in the spherical polar coordinate
system. The eigenfunctions in the spherical polar coordinate system are composed of
functions like the spherical Bessel and Hankel functions and the Associated Legendre
functions. The supporting literature for these functions is very satisfactory. However.
there are a few isolated works that have a fairly comprehensive account on the subject
of spheroidal functions and these will provide the necessary groundwork on which
to build the subject of basis function expansion in the prolate or oblate spheroidal
coordinate systems [16] [6].

Other related problems that are of interest are the solution of electromagnetic
scattering from roughened surfaces (the substrate has a hemispherical bump). the
problem of electromagnetic interaction among clusters in nanometer proxXimity to
each other (many coherent scatterers). There is also the class of problems related to
magnetic shielding. The present apparatus of vector basis functions can allow exact

solutions to a shielding problems. be it electric or magnetic shielding [27].

6.3 Antenna Problem

We now address the important problem of solving the Maxwell equations in the
presence of sources. In the process of developing the general formalism for scattering-
like problems (homogenous problem). we created a complete basis consisting of the L.
M and N functions. However, with zero-divergence plane waves and in the ahsence
of sources. the L functions did not seem to play any role other than its contribution
to make the total set attain the property of mathematical completeness. All our
scattering solutions were based on the M and N functions only. As it turns out it is
the L functions that provide the missing link to solving the inhomogenous Maxwell's
equations.

Maxwell equations in a linear. homogenous. isotropic and time-invariant medium

(that is € and g are not functions of r or ¢). are of the form:

V.E(r.t) = "(’;’t) ’ (6.4)
V.H(r.t) = 0 (6.5)
V x E(r.t) = _#M (6.6)

ot
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V x H(r.t) = J(r,t)+eaEé‘t"t). (6.7)

Taking divergence of both sides of Equation 6.7. since divergence of curl is zero. we

obtain the continuity equation for electric charges:

7]
V-J+e-a—t-(V-E) = V- (VxH)=0 (6.3)
dp
. V. - = R
Or, J + T 0 (6.9)
Taking curl of both sides of Equation 6.6 and Equation 6.7. we obtain:
aJ O°E
VxVxE = —[l?)?—[le—a—t? (610)
52
VxVxH = VXJ—;LG%—;E. (6.11)
Or. assuming sinusoidal time dependence e~ so that £ = —iw. and Ji:; =—-wi we
obtain:
(lwp) =V xVXxE+FE = 0 (6.12)
(VxI)—VxVxH+IH = 0 (6.13)

where k2 = &w?pe. Now, Equation 6.12 would resemble the form of the diffraction

equation (Eqn 2.18). if

V(V-E) = V_;p_ = jwpd
Or, Vp = iwpel
Or. V3 = iwpeV-J
Or. V3p = iwpe(ivp) (From Eqn 6.9)
Or. Vi +kp = 0. (6.14)

Similarly. Equation 6.13 would resemble the form of the diffraction equation (Eqn 2.13).
if

VxI=V(V-H)=0 (Since V-H = 0). (6.13)

From Vp = iwpel. obtaining curl of both sides of the equation and noting that the

curl of gradient is zero, we have V xJ = 0. So. if p(r.«) satisfies the scalar Helmholtz
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equation. then both E and H will satisfy the diffraction equation. In other words.
both E and H can be expressed in a series of the {L,,M,.N,} functions and p can

be expressed in a series of the scalar solutions {#',}. Thus:

p(r.w) = Y dntn (6.16)

1 | -
J(r.w) = iwezn:d"w'"“;f"l‘" (6.17)
E(r.w) = Y {c¢Ln.+ai M, +bN,} (6.138)
H(r.w) = S {L,+a:M,+6iN,}. (6.19)

where the coefficients of the expansion can be determined by matching the boundary
conditions. This is the solution to the famous antenna problem. We have the
additional boundary condition stating the convervation of charge. Normal component

of J is continous at a boundary:
Ji-n=J;-n. (6.20)

Thus, given a certain antenna geometry. the charge density can be obtained by solving
the scalar boundary value problem for p. This in turn will give the solution for
the current densities on the boundary of the antenna. Alternatively. the boundary
conditions on J can be invoked. The tangential component of J enter the boundary
conditions on E and H. The E and H fields can therefore be obtained by matching
the boundary conditions between the assumed solutions across the boundary. As it
turns out, p = 0 does indeed satisfy the conditions of this problem. and this subset
is what we were concerned with, for solution to the scattering problems. Thus our
original nomenclature of calling Equation 2.18 as the “diffraction equation’ is actually
a misnomer as the class of electromagnetic problems it represents is more general
than that required to study diffraction and scattering only.

The vector basis function solution to the inhomogenous Maxwell's equations will
open up the path to handling complicated radiation problems and their near field
behavior. Such problems are extremely difficult to handle with existing techniques
to solve the problem. To the best of our knowledge. this is the first time the antenna
problem has been shown to be solvable as a boundary value problem using a complete

set of basis functions.
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6.4 Final Remarks

We have developed the technique of basis function expansion in the spherical polar
coordinate system and solved a few representative problems. The problem of plasmon
resonance in colloids, diffraction from an elongated scatterer and the sphere-plane
model have been solved using one and the same technique. Even the inhomogenous
Maxwell equations are solved (in principle) using the same techniques. Although the
method of expanding solutions in ingeneously created functions has been around for
some time. this thesis establishes the aspect of applicability of this method to very

general problems.
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Appendix A

Helmholtz Equation in Spherical Polar
Coordinates

In spherical polar coordinate system. the scalar wave equation is readily solved by
the method of separation of variables. Thus. given the wave equation
V2u(r) + ku(r) = 0, (A1)

we assume the existence of solutions of the form u(r. 8. o) = R(r) P(8) ®(0). In

spherical polar coordinates. the Laplacian operator has the form:

1 d 7] d d d 1 0
72 = —_— 2 41 —_ —_ 1 —_— _— —_—— A
ViE r2sin [87‘ (r smoar) + a6 (Smeaﬁ) + do (sinﬁ@o)] ) (A-2)
On substitution of u = RP® into Equation A.l. and dividing by RP®. we obtain:
1 &2 1 g (. ,0(P9®) 1 9*(P®) N
—_— _ | — ks =0. AL
B a Bt e ang [ae (51“9 a0 ) T g | TH =0 (A
A.1 Radial Equation
Introducing the separation constant A
1 1L (a9 (. ,0(P®) 1 0¥ PP)
_— = = = A
P®sind [60 (51110 a6 ) + sinf 902 (A-4)
we obtain the separated radial equation:
1 & . A -

If k2 #£0. we let r = p/k and the equation becomes

2R 2dR A .
d—pz+;%+(“ﬁ)3=°' (A0
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If we let R = §/,/p. then the radial equation can finally be written in the form:

S 1dS (1 32)

_+__ —_——
dp?* ~ pdp

T S=0. (A7)

where 3 = /A + % This is Bessel’s Equation and the solutions are the well known

Bessel and Hankel functions S(p) = AJs(p) + BH{"?

1 1
R(T‘) = A'—\/Z_:JQ(LP) + B\/E

where A and B are arbitrary constants and the 1 and 2 in H"* indicate the Hankel

functions of the first and second kind respectively. When &2 = 0. corresponding to

(p). Equivalently.

H A (kr) (A.3)

dc or quasistatic conditions. we obtain Laplace’s equation and the radial equation

becomes much simpler:

1 & A

Assuming solution of the form R = r*. we obtain a quadratic equation for the roots

of a. so that ay = %(—1 + v1 +4A). So the general solution to the radial equation

for k = 0 will be of the form:

R(r) = Ar+ + Bre-. (A.10)

A.2 Angular Equations

From Equation A.4 we immediately obtain:

1 d dP 1 14
— | sin0— ——=—+ A =0. Alll
Psnddd (Sln0d0)+sin20(1>cl02+ 0 (A1)
The @-equation separates if we let
1 d°® )
—_—_— = — 5]
40 m*©. (A.12)
so that
®(0) = Ce'™® + De™'m?, (A.13)

If the full range of 0 € [0.27] is allowed in a given problem. then the requirement of

single-valued solutions imply that m can only assume integer values mé {0. 1. +£2. £3....}.

The corresponding #-equation becomes

d?P cosbdP <’\ m? >P=

_d_dg_*’sinﬂza " sin%4 (A1)
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On changing variables to £ = cos . the f-equation transforms immediately to Legendre’s

equation:

(A.15)

dr? 1—.1:2?1.'—-*-1——132

d’P 2r dP 1 (/\_ mz.)on.
l —x2

with solutions of the form P(z) = EP"(r) + FQ™(z). where A = n(n + 1). The

solutions are the well known Legendre (and Associated Legendre) functions P(r).

The second independent solution to Legendre’s equation are the Q™ (x) which are

singular on the z-axis. A problem in which the z-axis is not included must have these

solutions included in the expression for the general solution.

A.3 Eigenfunctions of the Helmholtz Equation

We substitute A = n(n + 1) in the expression for the solution to the radial equations.
Since 3% = ) + ﬁ we obtain 3 = n + -,} and the solution to the radial equations
assume the form:

1 1 .
R = A—xJ 1 (ki B—e Y (&
(r) m n+5( r) -+ \/Z; n+§( )

= A'j(kr)+ B'R2 (kr) (A.16)
where
Jalp) = %~Jn+5(p) (A7)

are the spherical Bessel functions. and

bEDe) =[5 H ) (A.L3)

are the spherical Hankel functions of the first and second kind. Therefore. in a region
that includes the origin and so the z-axis as well. and where o can range over the full
azimuthal range [0.27], the eigenfunctions to the scalar Helmholtz equation assume

the following form:
u(r.0.0) ~ ja(kr)P™(cos 8)e' ™. (A.19)

with n € {0.1.2....} and m € {0.£1.%£2..... +n}. For a region that excludes the
origin. but not the z-axis. the spherical Hankel functions are to be used instead of

the spherical Bessel functions.
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Appendix B

Spherical Bessel Functions

It has been shown that the radial part of the solution to the scalar Helmholtz equation

consists of the spherical Bessel and spherical Hankel functions:

Jn(z) = \/—I (B.1)

R(z) = )+ ing,( (B.2)

= \/—— :i:z\/—‘\/ (B.3)

Here n,(z) are the spherical Neumann functions. derived from the Neuman functions.
Ni(z), as indicated above. The argument z can be complex in general. In the defi-
nition of the spherical Hankel functions. the first and second kinds correspond to the

positive and negative signs respectively. Explicitly.

) 2 (=)™n+m)
= 2"z" m . .
Jn(T) r :L:’Om!(‘Zn+‘2m+l)!I and (B.4)
1 = (2n =2m)! , -
na.(zr) = Ty z=: e ))!.r' . (B.3)

Clearly. when £ — 0, jn(z) ~ 2™ — 0 for n # 0. So only jo(z) is non-zero as &+ — 0.
The spherical Neumann functions. n,(z) ~ 1/z"*! — o< as & — 0. The convergence
is slow for large arguments. and it is computationally desirable to expand in a series
of inverse powers of x. This can in fact be done and the resulting series is actually

expressible in a finite number of terms [42]. Thus we have (|| > 0) :

. _ 1 e n -_(n-—k+l)(n+k) i n (—i)-(n—k+l)(n+k‘)!
Ja(z) = 52 |€ g Hn e +e Z_; A ESSITERE .(B.6)
() — it - Fn+ k)! _
i (r) = z"+1.t Z/u n_k G 2d (B.7)

) l‘n+l —ir n (n +k)l .
h?(zr) = € Z RICEYSIETE (B.3)
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Thus, unlike the normal Bessel and Hankel functions. the spherical counterparts are
amenable for exact numerical computations that does not involve truncation errors
resulting from limiting the number of terms used in the computation of the series

expansion for these functions. As z — oc. we have the following asymptotic behavior:

B0(z) ~ Liyhie (B.9)
T

(2) ]"n-{-l —ir

R (z) ~ S e (B.10)

) 1 n+1

Ja(z) ~ ;cos(r—— 5 7) (B.11)

7). (B.12)

n.(r) ~ —sin(r—
r 2

A function f(kr — wt) represents a wave travelling in the direction of increasing
r. In other words. as t increases. the constant-phase points correspond to increas-
ing r values. Similarly f(kx + wt) represents a wave travelling in the direction of

decreasing x. Now with the convention of allowing the time dependence of the ex-
citation to be of the form e~™! (as opposed to €“!). a wave ~ "¢~ t = ¢ilhr—st)
represents an outgoing (increasing r) spherical wave. Thus with the convention of
time-dependence ~ €=, we immediately recognize that the functions that describe
the correct asymptotic behavior are the spherical Hankel functions of the first kind.
The spherical Hankel functions of the second kind represent incoming waves and are
not appropriate for expressing solutions to scattering problems. The spherical Bessel
and spherical Hankel functions of the first kind are two independent sets of functions

in which our scattering solutions can be expressed.

B.1 Recurrence Relations

The recurrence relations of the spherical Bessel and spherical Hankel functions follow
directly from the corresponding recurrence relations of the normal Bessel and Hankel
functions. If Z,(z) represent either the Bessel function or the Hankel functions. and

zn(r) represent the corresponding spherical counterparts. then. we have:

9
Zy-1(2) + Zpir (2) = “l—f’z,,(.l-). (B.13)



Multiplying both sides by /7 /(2z) and letting p = n + 1. we obtain :

[T [T In+1 [=
Z—IZn_;_(.‘L') + é;Zné-%(‘r) = . 2—r'Zn+;_(.l')

Similarly. by using the recurrence relation:

dZ,(: 1
dp_i‘r) = 5 [Zp_l(.l') - Zp+1(.l')] .

we obtain

za(r) 1

dr  In+1 [2 zn-t(2) = (4 L)zpp(2)]

In addition we have the following recurrence relations:

d
Z: [Tn+1;'n(.l,‘)] — In-H:n_l(I)
d
T [J.'":n(r)] = —r "zpu(r)
Now.
ld _d zn(kr)
rar etk = gl £ 2
k
= 5 1 (nzpo1(kr) — (n 4+ 1)zngr (k1))
+ T 1 (za—1(kr) + znpr (k7))
Thus.

1d
rar ) = 5

((n + 1)zno1(kr) = nzng(kr))
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(B.14)

(B.15)

(B.16)

(B.17)

(B.138)

(B.19)



B.2 Special Integrals of Spherical Bessel Functions

L4

A fundamental integral involved in obtaining the expansion coefficients of an incident

plane wave in the L. M, N basis. is the following:

T vi—p?

/ Ju(at)J at)——gsm((y—#)%).

(B.23)

Substituting the expression for the spherical Bessel functions (Equation B.1) into the

left hand side of the integral above, we immediately obtain:

1 sin((v~w3)
a(vtu+)(v—n)

/ Julat) j (at)dt =
When v — p. the right hand side has the factor of the form :

sin ((z/ —u)z ) T
llm — = z.
v (v—p)3 2 2

So we have the following important results :

. . 'y
[ idanidandt = smiees =g
= 0 (v — ) is even
# 0 (v — ) is odd.

(B.24)

(B.25)

(B.26)

Using the recurrence relations in the previous section. we can deduce some important

integrals. Clearly:

'.xl y . y . — v 9
7tk julkrydr = T (B.27)
x< . . . — I 93
 inealkrljnnthrydr = et (B.23)
o . . . — g iy
L itk iy dr = gt (B.29)
Since
lhr) _ 1 .
Jnlhr) _ (Jn=1(kr) + Jupr(kr)). (B.30)

kr 2n+1




therefore.

mgwkr) e L |
/0 = Jn-l(/»r)—/o 2n+1(1n-1(/»r)+Jn+1(/»r))1n_1(/~r)- (B.31)

Only the jo—1(kr)jn—~1(kr) product term will evaluate to a non-zero integral. The
other term. j,1(k7)jnt1 (k) will veild a vanishing integral because n — 1 — (n + 1) is

an even number. Thus:

] Jn.(]" ) T N
Ji dr B dneatr) = 2k(2n — (2n + 1) (B32)

Similarly.

fad Jn('l‘ ) T -
/0 dr kr g Jenilhr) = 2k(2n + 1)(2n + 3) (B.33)

Using the recurrence relation

fr g (k) = 50 1+1((" + Djn-i(kr) = njnsa(kr)). (B.34)
we obtain the important integrals:
and.
/0?C dr jny1(kr) - %% (rjn(kr)) = ~3En +,Tl];(2n ey (B.36)
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Finally, using the recurrence relation

d

d(kr) (Jﬂ-(kr)) = 2n+1 (n.]n—l(kr)—(n+]-)Jn-i-l(kr))- (B.}l)
we deduce the following integrals:
< d n
] )+ ——— (Ju(kr)) = B.33
/o drjn=albr) - oy U = S @ + (B.33)

and

~ o d o w4 .
/ r naalkr) - s Unlkr)) = ~gpaos =i (B.39)
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Appendix C

Associated Legendre Functions

C.1 Legendre and Associated Legendre Functions

The §-part of the separated scalar Helmholtz equation has been shown to reduce to

the following differential equation. known as Legendre’s Equation:

d*P 2r dP |

dr? 1—1‘2%-*-1-1'2

nn+1)— ——\P=0 (C.1)
1l —x2
The general solution to Legendre’s equation is given as:
P(cosl) = Cpn Pl (cosO) + Dmn @ (cosh) (C.2)

Here n € {0.1,2,...} and m € {0.xl.%2.....£n}. The functions @ *(r) have loga-
rithmic singularity at £ = %1 i.e., on the z-axis. We will not be concerned with these
functions since the points on the z-axis. at r = £1. are going to be included in the
problems.

There is a certain degree of variation in the definition for the Associated Legendre
Functions. It is mostly in the definition of the phase that different authors have
chosen to follow different conventions. In this work. we have throughout followed the
convention of Magnus and Oberhettinger [22]. This is the same phase convention
followed by Jackson [22] and the reference handbook by Gradshteyn and Ryzhik. We

choose to follow the following definition for the Associated Legendre Functions:

PM(z) = (—l)’"(l-—‘r2)"‘/2im—Pn(.r). (C.3)
drm
(—l)m 2\m drtm n
= SEnt ) i L)

where r = cos @ and P,(r) are the Legendre pélynomials. which are solutions to
Legendre’s equation with m=0.

The Associated Legendre Functions follow these basic properties:
(n —m)!

PIME) = (D"

n

P (r) (C.4)



Pr(=z) = (=)""P}(x) (C.5)
Pr(l) = 0, (C.6)
and the orthogonality relation:
1 m myoy (n +m)! .
/_1dan () Pe) = 5o (e (C.7)

C.2 Recursion Relations of Associated Legendre Functions

We enumerate a few recursion relations that will be used for solving some of the

integrals in the next section. Here z = cosf where § € [0.7] :

Pr(z)— PR (z) = 2n+1)V1-22Pl (1) (C.3)
P (z)—rP(z) = (n~m+ 1)V1 —z22P" Y1) (C.9)
x PMz) = Py(r) = (n+m)V1—22Pr(x) (C.10)
d .

(1— 1-2)Z;P,§"(.r) = (n+4 1)ePMz) —(n —m+ )P () (C.11)
= —nzP(z)+(n+m)P (r) (C.12)

= —V1-r2P™Yz) - mzPl(z) (C.13)

(1—12)(%13,:"(1:) = (n—m+1L)(n+m)VI—22P (1) (C.14)

+ mxPT(r)

(2n + 1)zPT(z) = (n—m+ 1)PR(z)+ (n+m)P™ (z) (C.15)

Pm

—n-—1

(r) = P (r) (C.16)

Equation C.8 can be rewritten by letting n — n — 1:

B o _on = 1) pretr) 4 e

v1-ax?
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Similarly. we can write:

Pm m
S0 = 0+ 1) PPl + e
-

@
—
2

i
i

P, (x

1 —z2

D]
—
)

—(2n — 1) Pm3Y(z) +

i
i

f/'";;(riz) - —(2n—1)P,;"_1(r)+$‘"§z_l_(g (C.20)
P,:ln_l_(zl - _(zn_:a)P,ﬁgl(I)Jr\';";% (C.21)
i@ = —(2n+l)P,I"(.r)+\7¥ (C22)
% = —(2n—3)P,§"_2(r)+[:}‘¥ (C.23)
A G P i C (C.24)

= Yoy
m-—1 m—-17 .,
Eole) o on 3y pro2(e) 4 B @) (C.25)

[ — 2

|
i

Pri'(x) ) -2 PR (x) .
= = —(2 1) P (.26
Vi (2n+1) P} (I)+\/1—_-I—2 ( )
(C'.27)
We can also write:
]' " )Q
VI-r2P7 N z) = (:-)_n+—U[Pr:’LI(I)_Pr:11(l')] (C.23)
1 , .
V1-—r2PMilz) = o 1)[P,:"_2(.r)—P,T(I)] (C.29)
1
VI= s Br(e) = gy P () = PO (e)] (C.30)
V1 —r2Prtl(r) = ! [P,T_";'(.l‘)—P,:'_ﬁz(.l')] (C.31)



m-+1 — 1 m m v e
VI-22 PR (z) = (2n+3)[Pn *2(z) — PE ()] (C.32)
1
VI-2Pa) = G P ) = Pra] (€39
m~1 — 1 my .. m (S
VI PIEN) = gy (BT () = Pl (C.34)

Using Equation C.15 we can immediately write the following equations as well:

rPl(z) = (2n1+ 0 :(n —m+1)P7 (r)+(n +m)P,I"_l(-r)] (C.35)
TP Hr) = (2n1+ 0 :(n—m+2)P,’1’;_‘ll(r)+(n+m— l)P,T_‘I‘(J)] (C.36)
r P™(r) = (2‘nl+ 3 (n—m)PREY(z) + (n+ m + P 2)] (C37)
T PIENe) = (2n1+3) (= m + 1) PR3N (z) + (n 4 m o+ 2) PP+ ()] (C33)
TPNe) = (in__ 0 :(n —m—1)P™Y(z) + (n +m)P,r_§1(.l-)] (C.39)
P75 Nx) = (gnl_ ) :(n —m+ )P Yr)+(n+m -2)P;"_;1(.r)] (C.40)
PS5 r) = (2n1+3) :(n—m+23)P,:l§l(.r)+(n+m)P,:“‘l(.l')] (C.A41)
TP (r) = (in_l) (n = m)P™x)+ (n+m = )P, ()] (C.A2)
r PT (1) (2n1+3) (n—m +2) PR, (z) + (n+m+ )PP ()] (C43)

C.3 Useful Integrals of Associated Legendre Functions

Now we shall evaluate a number of integrals that use the recursion relations listed
above and the orthogonality relations of the Associated Legendre functions. These

integrals are useful for evaluating the scalar products involving L. M and N functions.



Let us consider integrals of the form:

/ﬂ df sind P,:'fll(COSG)P (cosf) = / dr V1 — 22P7E (2) P (2).
0

Thus:
! 1 ]‘ ! m m m
/-ldx VI = 2P (2)P™(z) = (‘Zn—l)/ dz [PRy(2) = PR2)]| PR (x)
~ _(7n—l)/ dz P™(z) P™(z)
_ 2 (n +m)!
T 2n=DCrn+ 1) (n-m)
moi _ (—2) (n + m)! :
/ de V1 —-12P" (I)_('Zn—l)(?.n—i-l)(n—m)! (m>0) (C44)
L 2 pm—1 m ]' ! m m my
/_ldl'\/l_l"PnH (x)P(zr) = (‘)n+'3)/ d-l‘ Pn( ) — Pl )] Pl (r)
— (>n+3)/ dz P™(z) P™(z)
m _ 2 (n+m)! -
/dr\/l—rZPM_ll I)_(2n+l)(‘2n+3)(n-m)! (m=>0) (C.45)

/ dr VT = 22P™(2)P™(z) =

P,I"f‘( )~ P (o) P ()

r) Pt (2)

2 (n 4+ m)! .
m+1 m .
/ dr VT = 22P™Y () P (1) = ST T sy (2 0(C6)




1
[ deVI=FPrit@)Pr() =

n+1 pm+1( ) P,:TII(- ) Pm( r)

n~1

= ‘m /_[ dr P (x) B ()

! —Spm+l, ) pm (=2) (n+m+2)! -
/_ldr\/l TP () PP () = TR e (M2 0

Integrals of the type:

I " df cosd PmE (cos) P
(o}

1 .
T i(cost) = [ de —Z P ()P ()

We have

1
2 PT\(2) = o [ = m) PR (@) + (0 m = D PTo(2)]

Now since

Pri(e) _ _on — 3y (e + P22

VI-2z? " Vi-z?
we can continue the recursion on the second term on the right hand side. For every
recursion the second term on the right hand side will have the "n” index reduced by 2
where as the 'm’ index remains the same. Thus eventually we will have the m index
exceeding the n index and the recursive series will stop at that point. All the terms of
the right hand side generated by carrying out the recursion will contain factors of the
type P™; only. Thus in the product of terms generated by expanding the integrands.
we have only one term that will be non-zero due to the orthogonality relations of the

Associated Legendre Functions.

[, de = P ) P2 )
V=12

(’2n—1)/_ dz [(n—m)P7(r) + (n+m = )P, (x)] x

[~(2n = 3) P p(2) = (2 = TP, = -]

2Cn-=3)(n+m-—-1)
(2n — 1) /(l.r

T) Py(x)



[ PP () =

[ de = Pr ()P )

- (7n—1)/ dz [(n—m+ PP~} z) + (n + m = 2) P75 (0)] x

[~2n =3)P75 (@) = @n = T)PES -]

= S [ e P B )

[ dr P )P )

- (Qn_l)/-ldr [(n = m)PR(x) + (n 4+ m ~ )P, ()] %

[‘(2n +1)P™(z) — (2n —=3)P", — - ]

l ¥ l m m
= -G [(n—m)(2n+ 1)/_ld.rPn (z) P™(z)

+(rz+m—1)(2n.—3)/_lld.rP,:'f_,( ) P (a )]

o (=2) (n + m)! (n+m-—1)!
(n-—m—l)!+ (n —m-2)!

1 I
[ ds =P (2 P (2) = (=2)




1
Lt =P B
1 1
T (n+3) [, [in=m+3)PT5 ) + (n 4 m) PP ()]

[~(2n = 3)P75M(2) ~ 2n = T)PES — -]

So there is no overlap. and the integral should vanish:

1
/_ld.r mp,;"_( 7PN r) =0 (m>0) (C.51)
[,z =P PIY )
= / dz P™(z) [=(2n + 1)P™(2) = (2n = 3)P™, —
= —(-zn+1>/_1P:‘(r)P,:"(x)
L 1 " m S(n+m)! -
/_ldr e PP = (T (m20) (C.52)
! l 1 Pm( )Pm+l(_)
/ trm ()P (@
/ dz P™(z) [~(2n + 1)P™ ,(z) — (2n —3)P™, —
! 1 m m+1 _— ‘-
/_ld.r =PRI ) =0 (m20) (C.33)




= | dzPT3(z) [~(2n ~ )P Ne) ~ (2n - 5)PT5 — -]

~en-1) [ P23 @) PRT(2)

1 1 1 .
= _ld‘r mPyT(I)P;TII(I)‘/—IdI \/1_——1‘2[3,1"(.1‘)[3,:14{[(1')
o (n+m) 2 (n+m+2)!
= (-2) P ,
(n—m)l  2n+1)2n+3) (n—m)!

1 x? m maly . _ olR+m)! (n+m+2)(n+m+l)_ e
/_1‘[" FroF (l)—z(n-—m)![ (2n + 1)(2n + 3) L (€.36)

vV9i—z2 "
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= [ dr PP (2) PR (z) /d.r\/l—J,P"‘ )PP ()

-1 l1—-1z
— 0— 2 (n+m)!
- 2n+1)2n—=1)(n —m - 2)
! z’ (=2) (n+m)! -
) m m+41
/_IdI \/1——:1:'-’P"( JEoie) = (2n+1)2n - 1)(n = m = 2)! (€.57)

[ de = Zn()P'"‘()
V1-1?
=/dl 2n()Pml( —/ dr V1= 22P™ () P™ N ()
V1-—2z2

(n+m~2)! 2 (n+m)!
(n —m)! + (2n 4+ 1)2n = 1) (n — m)!

= (-2)

1 72 Jn+m=2)(n+m)n+m-—1) -
/_[‘“ (n —m)! [(‘2n+1)(‘2n—1) — 1 C38)

[ &= e PMa)PIGHE)
= / dr P (e )AIJ;'}H‘(.M—/1 dr VT = 22 P™ () P51 ()
1—.1'2 -1

2 (n+m)!
T 2n+1)2n +3) (n —m)!

1 r? m m-1; .. (—‘2) (Tl-}-m)!
[-1(11‘ mPn (‘r)P,H.ll(.l): -

Now we have seen that
d

m 1 m m




and therefore

/ d0 sin 8 cos 6 ( d Pm(cosa)> P+ (cos 6)

de" "
1 1 I
— m m-+1 m m+41
= n/ld.r = P (2) P (=) - (n-{-m)/_ldr s P () PR ()
_ (n +m) ( 2Q)(n+m+1) 5 (n+m-—1)!
= n2 (n - m'[ 7n+1(7n+3) 1] (n+m)l ‘)(n—m—[)!
T . d m +1 (e
/do sin 6 cos § | =P (cos 0) | Pt (cos ) (C.60)
0
_)(n+m)' (n+m+2)(n+m+1)_m
T (n—m)! (2n + 1)(2n + 3)

/xdé) sinf cos 8 ( ;Pf(cosﬁ)) P™*(cos §)

'2 1 r
—_ m m+1 - m+l
= / dr\/.l____P (z)P () — (n+m)/_l(lr\/1___l ) P ()
_ (=2) (n+m)! B (=2}n+m—=1)(n+m=2)!
B SO ) AT vy § s p——
/r df sin 6 cos 8 (in‘(cos 9)) P+ (cos 6) (C.61)
0 do
_ 2ln+ 1) (n+m)!
T 2n-1)2n+ D (n—m=2)

o d . .
/0 df sin 8 cos @ (dHP" (c050)> P cos 6)
l - : m m—1 ! m m-—1
= n/;[d.r = —1'2Pn (r)P7o (I)—(n+m)/_ld.rﬁpn ()Pl
(=2) (n + m)!

= "Garn@ i —m)
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/: df sin @ cos 8 (dio-P,:"(cos 9))'P,:"+‘1‘(cos 0) (C.62)
0
_ (-2n (ntm)
T (2n+3)2n 4+ 1) (n = m)!
T . d -1
/ df sinf cosf | —P™(cosf) ) P (cos8)
0 dé
1 rl 1 I _
- n/_ld.t S P2 P ) —(n+m)/_ldl~ = P P )
(n+m-=2|(n+m)n+m-—1) (=2) (n4+m-=2)!

n2

(n —m)!

l(

2n - 1)(2n +1)

—-1] —(n4+ m)

2n—-—1)(n—m~—1)!

— P™(cos 8)

d
/ d6 sin0cos€<
0

dg "
_2n4+m)(n+m—2)
T (2n-1)

(n — m)!

[(n—m)-i-n((

) P7'(cos 6)

n+m-—1)

(C.63)

(2n — 1)

(2n +1)

)

{n +m)

m+l1
Pn+l

()

(r) = / dz P (x) [~(2n + 1)PP(z) = (2n = 3) BT, — -]

1

(n +m)!

1
m m+1 = (=2 ' 6
/_ldz = PR P @) = (-2 (C.64)
/l dr ——— P™(2) P (1)
1
= [ dz Priie) [~(2n = DPRSH () = (20 = 3)PTE
-1
i 1 . .
/ dr P™(2)Pmsl(z) = 0 (C.65)
-1

vVi-r2 "




= [ dz P7(z) [=(2n = 3)Pry(2) — (20 — T) P, ~ -]

/ de ~ees P (2) P (2) = 0 (C.66)
—’1,'

m-~1
/ dl‘ 1—-1‘2 n( )Pn—l (l‘)
= / dr PR3 (x) [=(2n — 1)PRSN(2) = (20 ~ 5) Pt — -

= —-()n_l/ d.l'Pml Pm l()

(n 4+ m—2)!
(n —m)!

(C.67)

1 1 N - e
/_ld” ain @ z) PTG e) = (=2)

Making the substitution n’ = n + 1 we obtain

/ dx 1_12 P™(z) Pt ()

n—-n -1 m+1
/ dr s PT_(2) P2 ().

We have already evaluated such integrals (Equation C.48). Thus we obtain the answer

by simple substitution n — n — 1 in the previously found result:

dt —2 P™(r) P () = (=2) _(ntm)

N T (2n+ 1) (n—m—1) (€.65)

Similarly.
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Using the result already obtained (EquationC.49) we obtain:

Pm(l_)Pm—l(I):_ (—2) (n+m‘_]-)'

" @n+1) (n—m) (€.89)

/7 d6 sin 0 (d‘gp,:"(coso)) P™*Y(cos §)

—n/ dr -—1'2 P (z) Ptz )—-(n+m)/-ll(l.l‘

l m m
ﬁpn—l(‘l‘) Pn +1(.l').

The second integral with the substitution n — n+1 is immediately transformed to an
integral of type given by Equation C.52. The first integral is of the type just obtained
in Equation C.68. Thus we obtain on substitution:

n+1) (n+m)

( -
Mm+1)(n—m— 1) (C.70]

i : d m m+1 2
/0 d6 sin 6 (df)P" (c059)> Py *(cosd) =

m m—1
/ df sind (ngn (cosH)) P (cos 8)

_ n/ dr —2 1—12 P™(z) P™Y(z) — (n+m)/_ll d..z-\/__i___l__?P,:"_l(.p)P;"—l(.z.).
Now the second integral with the substitution n — n + 1 is immediately transformed
to an integral of type given by Equation C.55 and therefore vanishes. The first integral
is of the type obtained in Equation C.69. Thus we obtain on substitution:

(=2)n (n+m—1)!

2n+1) (n—m) (.70

/ d8 sin 6 ( P'"(cose)) P™1(cos ) =

/l dr .l'P"‘(J:)P’"_ (r)

(n +1 / dr P, n-—m+l) Pla(r)+(n+m)P (r)
(n+m)
(2n +1 /d -1 ()
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1 oms s pm _ 2 (n+m)! y -
/_I‘I“P" OFLE) = G e T D m = 1) (C.72)
1
/dra:P’"(x)P,:’j_l(.r)
>n+1 / dz PTy (2) [(n = m + 1) PR (2) + (n + m) P ()
—m+1)
=‘—"(2—n’%1—/ e P () P (2)
1 o m o 2 (n+m+1)! A
/.1‘1”13" @) = G @ s ) (= m) (C.73)

/d9 sin 0( P"‘(cos())) P (cos 8)

L
=n/_ldr-rP;"(r)P,ﬂl(r)—(n+m)/ld.pP,;"_l(.l-)P,;"H(I).

The second integral vanishes immediately due to the orthogonality of the P[(r)

functions. The first integral is obtained from Equation C.73. Thus on simplification

we obtain:

P

n+l

/ df sin® 0 (dOP" (cos 8) (cos8) =

(2n+1)(2n+3) (n—m)!

) 2n (n+m+1)!

(C.74)

/ d6 sin? (dgpn (cose)) P™ (cos 6)

:"lldffpf(I)Pﬂ1(I)—(n+m)/_l[tle;’f_l(r)P,I"_l(.z~)
= 2 (n + m)! 2 (n+m-1)
Mm@ I D—m T e w1




(=2)(n +1) (n+ m)!

Cn+ 2 —=1)(n—m~— 1) (C.15)

= d .
102 m m _
/0 df sin“ @ (—JHP" (cose)) P (cosb) =

C.4 Additional Integrals
The (Associated) Legendre’s differential equation can be written in the following form:

- [(1 _

dpm

m? m —
Ir = 0. (C.76)

}+[n(n+l)—1—rz b

where P™ are the usual Associated Legendre functions. We can write

d 5 dP? o 2P dP™
—_ — n = — L | n
dr l(l ) dr ] (1) dx? A
and
s dP2] o d [ dPE 2 BT 4P
E[(l_l S ] ‘P"'EZ[“_I i ] M T
So
md 2nadPT d 9\ pm APT , dP™ dPT} —
P"'c—l_ltl:(l_z ) dr 1 T dr [(I—I )P dr } —(l=) dr dr (C.77)

Multiplying both sides of Equation C.76 by P™ and P[ respectively. we obtain:

m 2
P,I'f—d— (1—rz)dP" +|n(n+1) - ——| PmP™ =0
dr dx | — 12
md 2([P:,1 11 m2 mpm
”na:[““”w]Jf["("+1>—1_I2]PnPn,—o
Or.
d 9\ om APT , dP™ dPm N .
E;[(l-I)P"’ dl]_(l_x)dr dx +[n(n+1)_1_l.2- PYP" =0
(C.73)
d dPn , dP™ dP™ m? ]
— (1 =)y Pr=—nl| —(] = p2)=inl 10t _ pmpm _ g
d:z'[( T°) Py dr] (1—-z%)— dx+[rz(n+1) | P

(C.79)
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Subtracting Equation C.79 from Equation C.78 we obtain

d 2 mdPrIn mdlarr:’l e ot m pm __
Z;[(l—z){ " o o }]+[n(n+l)—n(n + )| PP = 0.

Integrating both sides with respect to x. between-1 and 1. we obtain

. dpm apm) |
_ 2 m n__ m n!
(I—r ){P"' dr Fr dr }

: 1
+n(n+1) —n'(n' + 1)]/ld1P,j"P,:',‘ = 0.

-1

The first term vanishes at r = +1 since the factor (1 — r2?) vanishes. The second term

must therefore be zero. So. if n # n’ then we arrive at our usual orthogonal relation:

/1l dr P™(z)P™(z) =0  (n #n') (C.30)

Adding Equation C.79 and Equation C.78 we obtain

4 (1 —1?) P,':,‘flp—"+P,;"(“i + [n(n+ 1) +n'(n" + V)] PTPY
dr dr dr

dP™ dP? 2m?

—_— 2
=2l -z) dr dx T

Integrating both sides with respect to x. between -1 and 1. the first term on the left
hand side will vanish again because of the (1 — z2) factor. Therefore we immediately
arrive at the following relation:

1! 1 1 ” 1 P™ d m 2
ot DA+ ) [ aepppy = [ do {(1—1-)‘[)" i, ,,P,:"P,:',‘}.
-1 ~1

) ninl T dr dr ] — a2

<

Changing the variables to 8. so that

d 1 d
II"P:‘”(I) = _Sined_e ,:n(COS 9) and.
d d d d
_ 22y pm . pm - —pm el 77,1 .
(l—=z )den (.l‘)dIPn,(l‘) cl0P" (cosH)dHP,1 (cos 8)

we arrive at the important integral

= d d m?
0 M —_— m —_ TTII, m ";l
/0 df sin 6 (dHP" (cosB)ngn (cos 8) + sin2aPn (cos 8) P! (cosﬂ))
n(n+ 1)+ n'(

2

o~

n+1) /1 dr P (2)P77 ()
-1



Using the orthogonality of the P™, this immediately implies:

/:d()sinﬁ(

d
2 pm L pr

g ggte T

m2

sin’g "

Pm Pm

nl

)=

2n(n+ 1) (n + m)

n+1

(n—

m)!

6nn'
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(C.81)



Appendix D

Evaluating Inner Product Integrals

D.1 Introduction

In this appendix we show the details of carrying out various integrations. required to
obtain the inner products in the determination of the expansion coefficients of a plane
wave. We will employ various results summarized in some of the other appendices. in
particular the appendices on spherical Bessel functions and the Associated Legendre

functions will be used frequently. We have:

ekt = ii’(zs+1)js(kr){i(s'l)!ﬂ‘(cosa> Y Py(cos B)e™?

= i (s +1)!
+IZ i :_j =Py cos a)e™ P!(cos 0)6’”"} . (D.1)

where a. 3 specify the direction cosines of k. and 8. o give the direction cosines of r.
Also |k| = k and |r| = r in the above expression. The unit vectors of the cartesian

coordinate system assume the following form in spherical polar coordinates:

e; = sinfcosoe, +cosfcosoey —sinoe, (D.2)
e, = sinfsinde, + cosfsinoeg+ cosoe, (D.3)
e. = cosfe. —sinfe;. (D.4)

The €** term involves a double infinite summation in the indices s and . As we
shall soon find out. the various orthogonal properties of the functions involved in
these integrations of the inner products will eventually allow only a few surviving
terms. This will allow us to carry out these integrations analytically. giving us closed

form expressions for the final results.
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D.2 Evaluation of (E.|M,,,)

These inner products are necessary to evaluate the aZ,, coefficients. We recall the

definition for the inner product:

(E.|Mmn,) =/ dr/ d051n0/2-do e.- 'k -/90 e.-M: e*T. (D.3)

where the rfo below the last integral sign is a short-hand notation indicating that the
integration is to be performed with respect to all three variables r. 8 and o. Similarly
if we had only ré below the integral sign. it would indicate that the o-integration has
already been carried out. Now.

P (cos @) dP(cos )

Y — : A -xmo — . —imo
M, . = —imja(kr) e €5 — Jn(kr) 7 € e,. (D.6)
The M, does not have any e, component. therefore we obtain
Pm 0) _.
(E:[Myn) = / (—sinfeg) - (—zmjn(kr)ﬂ —imog ek
sin 8
= zm/ n(kr)P™(cosf)e™"™e. (D.7)
fo

This clearly vanishes when m = 0 = a3, = 0. The €'** factor has o-dependence of

the form e**°. Therefore. the ¢-integrations involved in this case are:

2T 1 L
doexoe-xmo —

(S

7 Olm and. (D.3)
0
2r

dO e—iloe—im¢

[SV]

F(S['_m. (D..())
[y

Thus among all the terms in the /[-summations. only { = £m terms survive as a result
of the orthogonality properties of the complex exponential functions. Since [ > 0
in the summations for ¢’**. when m > 0. only the terms corresponding { = m will
contribute. that is those terms containing the factor e*™J. On the other hand. when
m < 0. only the e'™ terms can be non-zero. The f#-integrations involved are of the

form :
/"'do sinf Pl(cos8)P™(cosf) (I =+m) (D.10)
0

Until we know the constraints imposed on the values of s. we still have another

potentially infinite summation to deal with. Let us consider the r-integration for the

moment:

/xdrjs(kr)j,,(kr)=0 (s—niseven.s #n ) (D.11)
0
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Let us consider the parity of the f-integral. Since P™(—z) = (—=1)"+"P™(r). we
immediately see that the parity of the integrand in the theta integration is:

l -
/ dz P{(z)P™(z) has parity ~ (—1)s+*n+m,
-1

Since [ = £m the #-integral will be non-zero only for s + n equal to an even number.
i.e. s +n = 2k. where k is an integer. Equivalently stated. the f-integral may not
vanish only when s and n differ by an even number. including zero. On the other
hand, the r-integral vanishes when s and n differ by an even number. except zero.
Thus the only possible term that survive from considering the parity of both the
and the r integrations is the n = s term. Thus. from the double infinite summation
we have only one surviving term that can contribute to the integral for the inner

product. Thus with { = m and s = n. the #-integral is evaluated in the following way:

= . - o L m apmgy_ 2 (n+m)
/0 df sin§ P (cos @) P (cos ) = /_ld.rPn (r)PT(r) = SRR Y Ea——T (D.12)
and the r-integral becomes:
o B X by
/0 dr ju(kr)jn(kr) = 1)
Th